
1

Nikos Parlavantzas
PaaS Clouds



2Outline

● PaaS clouds
● Serverless computing
● Case study

§ AWS Lambda



3Service models



4Platform as a Service
“A Platform as a Service (PaaS) is the capability
provided to a consumer to deploy onto the cloud
infrastructure consumer-created or acquired
applications created using programming
languages, libraries, services, and tools supported
by the provider. The consumer does not manage
or control the underlying cloud infrastructure
including network, servers, operating systems, or
storage, but has control over the deployed
applications and possibly configuration settings for
the application-hosting environment.”
● National Institute of Standards and Technology
(NIST)



5Platform as a Service

● The cloud provider delivers a complete 
application development and hosting 
environment 
§ APIs, IDE plug-ins, services, tools, … 

● Consumers write, deploy and manage 
their applications using this environment



6PaaS design issues

● Performance isolation
● Resource allocation granularity
● Auto-scaling 



7

Bare Metal Process-level 
(e.g., JVM)

Virtualization Containers

Used by: Supercomputing 
centers, cloud offerings for 
HPC/ performance-
sensitive applications

Used by: Data 
analytics frameworks, 
etc.

Used by: Major IaaS 
offerings, private cloud 
platforms

Used by: Many PaaS/IaaS 
offerings, private cloud 
platforms, research 
systems

Performance isolation



8Allocation granularity

● Coarse grained: allocates fixed bundles 
of resources

Bundles (extra large, large, small…)



9Allocation granularity

● Fine grained: allocates arbitrary amounts 
of resources

CPU

Memory



10Auto-scaling

Application

performance, 
utilization metrics

Autoscaler

Threshold-based policies,
Feedback-based policies,
Reinforcement learning,
Time series analysis…

resource scaling 
decisions

based on

Resource Pool



11Auto-scaling

Vertical scaling Horizontal scaling

For CPU and Memory For VMs and containers



12Example: Elastic Beanstalk

● Easy deployment and management 
of web applications 
§ Automated capacity provisioning, load 

balancing, scaling, health monitoring
● Supported platforms

§ Java, PHP, .NET, Node.js, Python, 
Ruby, Go, Tomcat, Docker

● Paying only for the resources on 
which the application runs (e.g., 
EC2 instances, ELB)



13What is serverless?



14What is serverless?

● Cloud computing model in which users do 
not have to manage servers

● Relies on two techniques:
§ Backend as a service (BaaS)

• i.e., using off-the-shelf services
§ Functions as a service (FaaS)

• i.e., deploying our code as functions, called when 
events occur 

AWS Lambda Google Cloud Functions Azure Functions



15What’s all the FaaS about?

● Execute user functions on demand
● Allocate resources only for function 

execution

fx

requests



16Service models
FaaS



17Typical web application

Initially:



18Typical web application

With serverless:



19Key features

● No need for managing long-
lived server processes or hosts

● Fully automatic scaling and 
resource provisioning

● Costs based on precise usage
§ “Never pay for idle”

● High availability supported by 
provider



20Advantages

● Reduced cost for customers
● Reduced packaging and deployment 

complexity
● Efficient resource usage for provider



21Drawbacks

● Vendor control and lock-in
● Isolation and security concerns
● No in-server state across requests



22

Case study:
AWS Lambda



23AWS Lambda

● Runs user code without requiring 
managing servers



24AWS Lambda

● Lambda function code
§ Node.js, Java, Python, C#, Java, Go, 

PowerShell, Ruby
§ Any libraries, artifacts, binaries, and 

configuration files
e.g., 

import json

def lambda_handler(event, context):

return {
'statusCode': 200,
'body': json.dumps('Hello from Lambda!')

}



25AWS Lambda

● Maximum duration of a function execution
§ 15 min

● Function memory size
§ Up to 10 GB in 1 MB increments

● Pricing based on 
§ number of requests
§ duration of request rounded up to nearest ms

* amount of allocated memory (i.e., total 
compute in GB-seconds)

§ Total charge = request charge + compute 
charge



26Price/performance

● Choosing the optimal function memory 
size



27Cold start

● No existing function instance is available 
to process an event
§ Adds latency of 100 ms - 10 s



28Warm vs. cold start



29Avoiding cold starts
● Provisioned Concurrency

§ Keeps a desired number of function instances 
initialised (warm) so that they are ready to 
respond to invocations

● The amount of concurrency can be modified 
according to scaling policies

● Pricing
§ period of time for which provisioned concurrency 

is enabled 
§ amount of concurrency * amount of allocated 

memory
§ Total charge = provisioned concurrency charge 

+ request charge + compute charge



30Event sources

● Synchronous
§ API Gateway, Alexa, …

● Asynchronous
§ S3, CloudWatch Events, …

● Stream/Queue
§ Kinesis, DynamoDB, …



31Summary

● PaaS clouds automate the deployment 
and management of applications, 
relieving users of the complexity of 
managing underlying resources; a 
representative offering is Elastic 
Beanstack

● Serverless applications rely on third-party 
services or on custom code (functions) 
executed on demand



32References
● Resource Management in Cloud Platform as 

a Service Systems: Analysis and 
Opportunities, Costache, S., Dib, D., 
Parlavantzas, N., Morin, C., Journal of 
Systems and Software, Volume 132, May 
2017

● Serverless Architectures, Mike Roberts, 
https://martinfowler.com/articles/serverless.h
tml

● Serverless Architectures on AWS, Peter 
Sbarski, Manning Publications, 2017

● Beginning Serverless Computing, Maddie 
Stigler, Apress, 2018


