
 
 
 
 

Big Data Storage and Processing 
 

Lab 1: Strong and Eventual Consistency 
 
 
The goal of this TP is to understand the concept of consistency (and its 
different levels) in the context of Big Data. In particular, we will focus on 
consistency for data replication in distributed systems.  
 
In an ideal world there would only be one consistency model. Consider a 
storage system made up of multiple replicas and (many) clients 
accessing it concurrently. Ideally, when an update is made on one 
replica, all clients will see that update (independent of the replica they 
query). This is the strong consistency.  
 
However, this is very hard to achieve: it comes at the cost of increased 
latency (needed to synchronize all replicas before acknowledging the 
update to the client). In many cases (e.g., Facebook updates), it is 
preferable to have a very low latency of the updates, although maybe 
not all replicas are immediately synchronized. To enable this, the 
degrees of consistency can vary, according to the applications needs.  
 
One such relaxed model of consistency is the eventual consistency, 
useful when the “fast access” requirement dominates. Clients update 
some replica (e.g., the closest or some designated replica) and the 
updated replica sends update messages to all other replicas. This 
means that if clients query different replicas during the inconsistency 
window (the time needed to synchronize all replicas) they will get 
outdated / different values from different replicas. However, the storage 
system guarantees that if no new updates are made to the data, 
eventually (after the inconsistency window closes) all accesses will 
return the last updated value.  
 
The most popular system that implements eventual consistency is DNS, 
the domain name system. Updates to a name are distributed according 
to a configured pattern and in combination with time controlled caches; 
eventually clients will see the update. 



 
 
We will implement in Java these two levels of consistency. We will use 
the environment described in the picture bellow:  
 

 
 

• The Replicated storage. You should assume that it is something 
big and geographically distributed. We can use a set of HashMaps 
to emulate each replica. Remember, all replicas should 
(eventually) store the same data.  

• The Users. We can emulate them using Threads that write to 
and read from (different replicas of) the Replicated storage. At the 
user side, consistency has to do with how and when a user sees 
updates made by another user to the storage system.  

 
 
Exercise 1. Setting up the environment (done) 
 
The archive “Squelette du programme” contains:  

• Replica.java class that implements the replicas of the storage. 
• User.java extends JavaThread to describe user behaviour. 
• Main.java class that launches replicas and users.   

 
Of course, you can implement your own Replica / User / Main classes, if 
you wish so.   



Exercise 2. Basic strong consistency  
 
A first approach to implementing strong consistency relies on 
transactions.  
 
WRITE 
start transaction (lock all replicas) 
         make the same update to all replicas 
end transaction (unlock all replicas: either commit – all changes are 
made, are visible and persist or abort – no changes are made to any 
replica). 
 
READ 
read from any replica 

 
Implement user write and read methods according to this protocol. For 
transaction support you can use the synchronized construct available 
in Java or specific synchronization data structures from the 
java.util.concurrent package (e.g. Lock, Semaphore etc.). Test 
the methods with users reading and writing concurrently from different 
replicas. What do you notice? What would happen if the storage system 
had much more replicas?  
 
 
 
Exercise 3. Optimized strong consistency (optional) 
 
There are several problems with locking all replicas to make an update: 
some replicas may be at the end of slow communication lines; some 
replicas may fail, or be slow or overloaded. All these translate into high 
delays in responding to queries. A better option is to try a majority voting 
scheme – Quorum Assembly – and lock only a subset of the replicas, 
instead of all. Let’s define:  
 
N – the number of replicas 
W – the write quorum: the number of replicas that need to be locked for 
write (i.e., acknowledge the receipt of the update before the update 
completes) 
R – the read quorum: the number of replicas that are contacted for a 
read operation 
 
 



 
The conditions that need to be satisfied when choosing W and R are:  
 
W > N/2 (only one write quorum can successfully be assembled at any 
time) 
 
W + R > N (every W and R contain at least one up-to-date replica: the 
write set and the read set always overlap and one can guarantee strong 
consistency) 
 
WRITE 
start transaction (lock W replicas) 
         bring all W replicas up-to-date (i.e., synch their data) 
         make the same update to all W replicas 
end transaction  
 
READ 
contact R replicas and read from the most recently updated 

 
e.g. W = N, R = 1 is lock all copies for writing, read from any – as before. 
 
Another example: N = 7, W = 5, R = 3. Circles are writes, rectangles are 
reads. Each color represents a new action (write or read). 

 



Change the previous read and write methods to implement this protocol. 
Choose the appropriate W and R values. For the read operation, you will 
need to know which replica is the most recent updated (for instance, you 
can store a timestamp of the latest update for each replica, or a total 
number of updates).   
 
Comment. In distributed storage systems that need to address high-
performance and high-availability the number N of replicas is in general 
higher than 2. Systems that focus solely on fault-tolerance often use N=3 
(with W=2 and R=2 configurations). Systems that need to serve very 
high read loads often replicate their data beyond what is required for 
fault-tolerance, where N can be tens or even hundreds of nodes and 
with R configured to 1 such that a single read will return a result. For 
systems that are concerned about consistency they set W=N for 
updates, but which may decrease the probability of the write succeeding. 
How to configure N, W and R depends on what the common case is and 
which performance path needs to be optimized. In R=1 and N=W we 
optimize for the read case and in the W=1 and R=N we would optimize 
for a very fast write.  
 
 
 
 
Summary 
 
Inconsistency can be tolerated for two reasons: for improving read and 
write performance under highly concurrent conditions and for handling 
partition cases where a majority model would render part of the system 
unavailable even though the nodes are up and running. 
 
Whether or not inconsistencies are acceptable depends on the client 
application. A specific popular case is a website scenario in which we 
can have the notion of user-perceived consistency; the inconsistency 
window needs to be smaller than the time expected for the customer to 
return for the next page load. This allows for updates to propagate 
through the system, before the next read is expected. 
 
 


