

Lab 2 – Big Data Processing with MapReduce

MapReduce

MapReduce is a parallel programming paradigm proposed by Google and successfully
used by several Internet service providers to perform computations on massive
amounts of data. A computation takes as input a set of data and produces as output a
set of key-value pairs extracted from the inputs. The user of the MapReduce library
expresses the computation as two functions:

- map which processes a portion of the input data to generate a set of
intermediate key-value pairs;

- reduce which merges all intermediate values associated with the same
intermediate key.

The two processing steps can be parallelized on a set of nodes. The framework takes
care of splitting the input data, scheduling the component tasks, monitoring and re-
executing the failed ones.

Word Count

Word Count is a classic MapReduce use case. It consists of counting the number of
occurrences of words in a text stored in one or more very large files. Word Count is
used by Google to build the index of the search engine and to calculate the PageRank
(the input files are .html pages).

Below are the detailed data flows of Word Count using MapReduce with 3 Mappers
and 2 Reducers:

As a single lab is not enough to install and learn how to use Hadoop (the open-source
implementation of MapReduce), we propose to simulate this model for Word Count
calculation, in Java. For the parallel execution we will rely on Java Threads.

A program is often designed as a (sequential) sequence of instructions. Nevertheless,
it is possible to design programs where several tasks run simultaneously, in parallel;
these different tasks are called Threads and we say that the application is
multithreaded. This parallelism can only be effective if the machine used is multi-
processor; if this is not the case, the different tasks share the processor successively;
we will assume in this chapter that the machine used is mono-processor. To obtain
multithreaded applications, one starts, generally with a main method, a first thread
which can start others without stopping; the new threads can in their turn start other
threads. A thread is sometimes also called a lightweight process. A multi-threaded
program is also called concurrent.

The Thread class of the java.lang package is the one that must be derived in order
for a class to be considered as a thread and therefore executable in parallel. The code
that you want to be executed when activated must be placed in the run() method of
your class, which extends the Thread class. In our case, the Mappers and the
Reducers will be Threads.

Exercises

The lab archive is available online on the e-learning platform. It contains 3 .java
source files and several .txt files to test your program.

As in MapReduce, the whole part of splitting the data, launching Threads and
synchronization is already implemented:

- WordCount.java - it is the Master that splits the input file into different blocks,
and launches the Mapper and Reducer threads by assigning the data to them.

It remains to fill the run() methods of the 2 Mapper and Reducer classes with the Word
Count logic:

- Mapper.java - class for the threads that count the occurrences of each word
in the local piece of text and write the results (key-value pairs) in a dictionary;

- Reducer.java - class for threads that merge all intermediate values
associated with the same intermediate key.

Exercise 1

Read the code of the 3 source files, compile and run the provided skeleton. What do
you observe?

Exercise 2

Fill the run() function of the Mapper. The results of each Mapper are stored in a
dictionary in the form <word, nbOccurences>.

Example:

Alice, 5
in, 10
the, 20
rabbit, 7
 ...

Recall: One of the fairly common programming tasks is to parse a text into words or
"lexical units" (tokens). These units are separated by a set of delimiters. The
StringTokenizer class is used to perform this analysis. To extract a word from a
text, you can use the StringTokenizer class of the java.util package. See the
java documentation of the StringTokenizer class and more particularly its
constructor and its nextToken() method.

To store the word occurrence counters, we will use the HashMap class of the
java.util package. The keys will be the words of the text, instances of the String
class (this class redefines the hashCode() and equals() methods for String). The
object ordered according to a key (a word) will be an instance of the Integer class
giving the number of occurrences of the associated word. Consult the java
documentation of the HashMap class and more particularly its constructor without
argument and its methods put(), get(), containsKey() and keys().

Exercise 3

The results of the Mappers are read by the Reducers for the aggregation. For this
exercise we assume that we have only one Reducer which will merge all the
intermediate results into a single HashMap. Fill the run() function of the Reducer.

