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Big Data Processing 
with MapReduce
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The Big Data pipeline
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• Google File System
• MapReduce programming model
• Examples
• MapReduce system architecture
• Apache Hadoop
• Limitations
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• Permanently stores data
• Usually on top of a lower-level physical storage 

medium

• Divided into logical units called “files”
• Addressable by a filename (“foo.txt”)
• Usually supports hierarchical nesting (directories)

• A file path = relative (or absolute) directory + file 
name

/dir1/dir2/foo.txt

File systems overview
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• Support access to files on remote servers

• Must support concurrency
• Locking, who “wins” concurrent writes, etc.
• Must gracefully handle dropped connections

• Can offer support for replication and local 
caching

Distributed file systems
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• Google needed a good distributed file system
• Redundant storage of massive amounts of data 

on cheap and unreliable computers
• Why not use an existing file system?

• Google’s problems are different from anyone 
else’s
• Different workload and design priorities

• GFS is designed for Google apps and 
workloads

• Google apps are designed for GFS

Motivation
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• Commodity hardware
• Inexpensive

• High component failure rates
• Inexpensive commodity components fail all the 

time
• The norm rather than the exception

• Huge storage needs
• Must support PBs of space

Assumptions: environment
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• Files stored as 
chunks

• Fixed size 
(64MB)

• Replication
• Each chunk 

replicated 
across 3+ 
chunkservers

Google File Ssystem design principles

• No data caching: little benefit due to large data sets
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Good news: “easy” parallelization 
• Reading the entire web with 1,000 machines ⇒ less 

than 3 hours 
Bad news: programming work 

• Communication and coordination 
• Debugging 
• Fault tolerance 
• Management and monitoring 
• Optimization 

Worse news: repeat this for every problem

Spread the work over many machines

Big Data processing @Google
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A simple programming model that applies to 
many data-intensive computing problems 

Approach: hide messy details in a runtime 
library

• Automatic parallelization 
• Load balancing 
• Network and disk transfer optimization 
• Handling of machine failures 
• Robustness 
• Improvements to core library benefit all users of library!

What is needed?



13Sucha a model is… MapReduce

Distribute



14

Typical problem solved by MapReduce
• Read a lot of data 
• Map: extract something interesting from each record
• Shuffle (sort) 
• Reduce: aggregate, summarize, filter or transform 
• Write the results 

Outline stays the same, map and reduce change 
to fit the problem

Such a model is… MapReduce



15MapReduce at a glance

Mapper Mapper Mapper Mapper

Reducer Reducer

intermediate
file 1

intermediate
file 2

intermediate
file 3

output
file 1

intermediate
file 4

output
file 2

Shuffle
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It is inspired by the Map and Reduce functions 
from functional programming

Users implement the interface of two primary 
functions

• map(k, v) → <k', v'>* 
• reduce(k', <v'>*) → <k', v''>* 

All v' with same k' are reduced together, and 
processed in v' order

Everything is key / value



17Example 1: word count

Cat, 1
Cat, 1
Cat, 1

Dog, 1
Dog ,1
Dog, 1
Dog, 1

Cat, 3
Dog, 4
Duck, 1
Mouse, 1

Cat, 3

Dog, 4



18Example 2: word length count



19Example 2: word length count



20Example 2: word length count
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Map

Map

Map

Reduce

Reduce

Input Output

<key, value>

Map Reduce

map(k, v) → <k', v'>*

Records from the data source (lines out of files, rows of a 
database, etc) are fed into the map function as key*value 
pairs: (filename, line). Then:

Zoom on the Map phase

Shuffle
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For certain types of reduce functions (commutative 
and associative), we can execute the reduce 
function within the mappers

• SUM, COUNT, MAX, MIN ...

Example: word count
• Without Combiner 

<docid, {list of words}> => N records <word, 1> 
• With Combiner

<docid, {list of words}> => <word, N> 
• N, the number of times the word appears in the 

mapper

Combiner
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Map

Map

Map

Reduce

Reduce

Input Output

<key, value>

Map Reduce

After the map phase is over, all the intermediate 
values for a given output key are shuffled (sorted) 
together into a list

Zoom on the Shuffle phase

Shuffle
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Map

Map

Map

Reduce

Reduce

Input Output

<key, value>

Map Reduce

reduce() combines those intermediate values into one or 
more final values per key (usually only one)

Zoom on the Reduce phase

reduce(k', <v'>*) → <k', v''>*

Shuffle
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Google MapReduce

25

Architectural overview

worker

worker
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One master, many workers
•  Master partitions input file into M splits, by key
• Master creates a map task for each split
•  Master assigns the M map tasks to workers (=servers), 
keeps track of their progress
•  Workers compute and write their output to local disk, 
partitioned into R regions
– using a partition function: e.g., hash(key) mod R
•  Master assigns R reduce tasks to the workers
•  Reduce workers read corresponding regions from the 
map workers’ local disks, compute and write results

Often: 1 split = 64 MB
M tasks = 200,000; R tasks = 4,000; workers = 2,000 

System architecture

why ?
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map() functions run in parallel, 
creating different intermediate 
values from the input data

reduce() functions also run in 
parallel, each working on a 
different output key

All values are processed 
independently

Parallelism

Bottleneck: reduce phase can’t start 
until map phase is completely finished

map map

map

reduce

reduce
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• Nodes that take unusually 
long time to complete one of 
the tasks

• Reasons
• Bad disk forces frequent 

correctable errors 
(30MB/s to 1MB/s)

• The cluster scheduler 
has scheduled other 
tasks on that machine

• Stragglers are a main reason 
for slowdown: a MR job is 
dominated by the slowest task 

Stragglers

Solution: backup tasks - pre-emptive backup 
execution of the last few remaining in-progress tasks



31Speculation in MapReduce

Slow nodes (stragglers) à run backup tasks

Node 1

Node 2
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• distributed grep
• distributed sort 
• term-vector per host 
• document clustering
• machine learning
• web access log stats
• web link-graph reversal 
• inverted index construction 
• statistical machine translation 

MapReduce widely used at Google
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200 seconds

MapReduce widely used at Google



34MapReduce limitations

• Not efficient for real-time processing

• Very limited queries
• Difficult to write more complex tasks
• Need multiple map-reduce operations
• Solutions: declarative query languages J

• No support for iterative processing

• Barrier between Map and Reduce
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35
Apache Hadoop



36What is  Hadoop?

Open source implementation of MapReduce
• Top-level Apache project
• Developed in Java 

Platform for data storage and processing
• Scalable
• Fault tolerant
• Distributed
• Any type of complex data



38Why?

Supercomputers
(MPI, OpenMPI)



41The Hadoop 1.0 stack 



42Hadoop MapReduce

Master-Slave architecture

Job Tracker (Master)
• Accepts MapReduce jobs submitted by users

• Assigns Map and Reduce tasks to TaskTrackers

• Re-executes tasks upon failure

Task Trackers (Workers)
• Run Map and Reduce tasks
• Fixed number of map and reduce slots allocated by the 

administrator to each node according to its resources
• Cannot run more map tasks than map slots at any given 

moment, even if no reduce tasks are running



43Putting everything together: 
HDFS and Hadoop deployment

HDFS
Hadoop



44Hadoop MapReduce Client

• Define 
• Mapper class
• Reducer class
• “Launching” program

• Language support
• Java
• C++
• Python



45

Word Count example in Hadoop



46Data locality

• Data locality is exposed in the map task 
scheduling

• Tasks are assigned to nodes where the 
needed data chunks are already present (in 
HDFS) tasks where data is

• JobTracker schedules map tasks 
considering
• Node-awareness
• Rack-awareness 
• Non-local map tasks



47Open Issues: data locality

Data locality in the Cloud

The simplicity of map tasks scheduling leads to non-local 
maps execution (25%)    

Node1 Node2 Node3 Node5Node4 Node6

31 105 13 9764 5 67 1082 2 4
9 12 12 8 11 11

Empty node Empty node Empty node 

Data locality is crucial for Hadoop’s performance



48Open Issues – data skew

• The current Hadoop hash partitioning for Reduce works 
well when the keys are equally frequent and uniformly 
stored in the data nodes

• In the presence of partitioning skew
• Variation in Intermediate Keys frequencies
• Variation in Intermediate Keys distribution among 

different Data Nodes
• Native blindly hash-partitioning is inadequate and will 

lead to
• Network congestion
• Unfairness in reducers inputs → Reduce computation 

skew
• Performance degradation



49Open Issues – data skew

Data Node 1
K1

Hash code: (Intermediate-key) Modulo ReduceID

K1 K1 K2 K2 K2

K2 K2 K3 K3 K3 K3

K4 K4 K4 K4 K5 K6

Data Node 2
K1 K1 K1 K1 K1 K1

K1 K1 K1 K2 K4 K4

K4 K5 K5 K6 K6 K6

Data Node 3
K1 K1 K1 K2K2

K2

K1

K4 K4 K4 K4 K4

K4 K5 K5 K5 K5 K5

K1 K2 K3 K4 K5 K6K1 K2 K3 K4 K5 K6

K1 K1 K1 K2 K2 K2

K2 K2 K3 K3 K3 K3

K4 K4 K4 K4 K5 K6

K1 K1 K1 K1 K1 K1

K1 K1 K1 K2 K4 K4

K4 K5 K5 K6 K6 K6

K1 K1 K1 K2K2

K2

K1

K4 K4 K4 K4 K4

K4 K5 K5 K5 K5 K5

Data Node 1 Data Node 2 Data Node 3

Total Out Data Transfer 11 15 18 Total 
44/54

Reduce Input 29 17 8



50Open Issues – single JobTracker

JobTracker has two 
distinct responsibilities
• Cluster resource 

management
• Task coordination

Scalability bottleneck 
caused by having a single 
JobTracker

1



51Limitations of Hadoop v1

• Due to this scalability issue, several smaller 
and less-powerful clusters had to be created 
and maintained

• Slots: harm the cluster utilization because when 
all map slots are taken (and we still want more), 
we cannot use any reduce slots, even if they are 
available, or vice versa

• Hadoop was designed to run MapReduce jobs 
only

• Need to support other programming paradigms 
besides MapReduce



52Idea

Reduce the responsibilities of the single JobTracker
and delegate some of them to the many TaskTrackers

• New design by separating the responsibilities of the 
JobTracker into two distinct processes

• Resource Manager - tracks live nodes and available 
resources in the cluster and assigning tasks to them

• Application Master - for each submitted job, dedicated and 
short-living process controls the execution of tasks within that 
job only

• Thus, the coordination of a job's life cycle is spread 
across all of the available machines in the cluster:

• More jobs can run in parallel, scalability dramatically 
increased



53YARN: The next generation of 
Hadoop's compute platform

One cluster that can run any distributed application

- Former TaskTracker



56Running Hadoop

Multiple options: 
• On your local machine

• Standalone: single Java process (good for 
debugging)

• Pseudo distributed: each Hadoop daemon runs 
in a separate Java process 

• Fully distributed
• Clusters ranging from a few nodes to extremely 

large clusters with thousands of nodes
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