
1

Big Data Processing
with MapReduce

2

The Big Data pipeline

3Outline

• Google File System
• MapReduce programming model
• Examples
• MapReduce system architecture
• Apache Hadoop
• Limitations

4

• Permanently stores data
• Usually on top of a lower-level physical storage

medium

• Divided into logical units called “files”
• Addressable by a filename (“foo.txt”)
• Usually supports hierarchical nesting (directories)

• A file path = relative (or absolute) directory + file
name

/dir1/dir2/foo.txt

File systems overview

5

• Support access to files on remote servers

• Must support concurrency
• Locking, who “wins” concurrent writes, etc.
• Must gracefully handle dropped connections

• Can offer support for replication and local
caching

Distributed file systems

6

• Google needed a good distributed file system
• Redundant storage of massive amounts of data

on cheap and unreliable computers
• Why not use an existing file system?

• Google’s problems are different from anyone
else’s
• Different workload and design priorities

• GFS is designed for Google apps and
workloads

• Google apps are designed for GFS

Motivation

7

• Commodity hardware
• Inexpensive

• High component failure rates
• Inexpensive commodity components fail all the

time
• The norm rather than the exception

• Huge storage needs
• Must support PBs of space

Assumptions: environment

8

• Files stored as
chunks

• Fixed size
(64MB)

• Replication
• Each chunk

replicated
across 3+
chunkservers

Google File Ssystem design principles

• No data caching: little benefit due to large data sets

10

Good news: “easy” parallelization
• Reading the entire web with 1,000 machines ⇒ less

than 3 hours
Bad news: programming work

• Communication and coordination
• Debugging
• Fault tolerance
• Management and monitoring
• Optimization

Worse news: repeat this for every problem

Spread the work over many machines

Big Data processing @Google

12

A simple programming model that applies to
many data-intensive computing problems

Approach: hide messy details in a runtime
library

• Automatic parallelization
• Load balancing
• Network and disk transfer optimization
• Handling of machine failures
• Robustness
• Improvements to core library benefit all users of library!

What is needed?

13Sucha a model is… MapReduce

Distribute

14

Typical problem solved by MapReduce
• Read a lot of data
• Map: extract something interesting from each record
• Shuffle (sort)
• Reduce: aggregate, summarize, filter or transform
• Write the results

Outline stays the same, map and reduce change
to fit the problem

Such a model is… MapReduce

15MapReduce at a glance

Mapper Mapper Mapper Mapper

Reducer Reducer

intermediate
file 1

intermediate
file 2

intermediate
file 3

output
file 1

intermediate
file 4

output
file 2

Shuffle

16

It is inspired by the Map and Reduce functions
from functional programming

Users implement the interface of two primary
functions

• map(k, v) → <k', v'>*
• reduce(k', <v'>*) → <k', v''>*

All v' with same k' are reduced together, and
processed in v' order

Everything is key / value

17Example 1: word count

Cat, 1
Cat, 1
Cat, 1

Dog, 1
Dog ,1
Dog, 1
Dog, 1

Cat, 3
Dog, 4
Duck, 1
Mouse, 1

Cat, 3

Dog, 4

18Example 2: word length count

19Example 2: word length count

20Example 2: word length count

21

Map

Map

Map

Reduce

Reduce

Input Output

<key, value>

Map Reduce

map(k, v) → <k', v'>*

Records from the data source (lines out of files, rows of a
database, etc) are fed into the map function as key*value
pairs: (filename, line). Then:

Zoom on the Map phase

Shuffle

22

For certain types of reduce functions (commutative
and associative), we can execute the reduce
function within the mappers

• SUM, COUNT, MAX, MIN ...

Example: word count
• Without Combiner

<docid, {list of words}> => N records <word, 1>
• With Combiner

<docid, {list of words}> => <word, N>
• N, the number of times the word appears in the

mapper

Combiner

23

Map

Map

Map

Reduce

Reduce

Input Output

<key, value>

Map Reduce

After the map phase is over, all the intermediate
values for a given output key are shuffled (sorted)
together into a list

Zoom on the Shuffle phase

Shuffle

24

Map

Map

Map

Reduce

Reduce

Input Output

<key, value>

Map Reduce

reduce() combines those intermediate values into one or
more final values per key (usually only one)

Zoom on the Reduce phase

reduce(k', <v'>*) → <k', v''>*

Shuffle

25

Google MapReduce

25

Architectural overview

worker

worker

26

One master, many workers
• Master partitions input file into M splits, by key
• Master creates a map task for each split
• Master assigns the M map tasks to workers (=servers),
keeps track of their progress
• Workers compute and write their output to local disk,
partitioned into R regions
– using a partition function: e.g., hash(key) mod R
• Master assigns R reduce tasks to the workers
• Reduce workers read corresponding regions from the
map workers’ local disks, compute and write results

Often: 1 split = 64 MB
M tasks = 200,000; R tasks = 4,000; workers = 2,000

System architecture

why ?

29

map() functions run in parallel,
creating different intermediate
values from the input data

reduce() functions also run in
parallel, each working on a
different output key

All values are processed
independently

Parallelism

Bottleneck: reduce phase can’t start
until map phase is completely finished

map map

map

reduce

reduce

30

• Nodes that take unusually
long time to complete one of
the tasks

• Reasons
• Bad disk forces frequent

correctable errors
(30MB/s to 1MB/s)

• The cluster scheduler
has scheduled other
tasks on that machine

• Stragglers are a main reason
for slowdown: a MR job is
dominated by the slowest task

Stragglers

Solution: backup tasks - pre-emptive backup
execution of the last few remaining in-progress tasks

31Speculation in MapReduce

Slow nodes (stragglers) à run backup tasks

Node 1

Node 2

32

• distributed grep
• distributed sort
• term-vector per host
• document clustering
• machine learning
• web access log stats
• web link-graph reversal
• inverted index construction
• statistical machine translation

MapReduce widely used at Google

33

200 seconds

MapReduce widely used at Google

34MapReduce limitations

• Not efficient for real-time processing

• Very limited queries
• Difficult to write more complex tasks
• Need multiple map-reduce operations
• Solutions: declarative query languages J

• No support for iterative processing

• Barrier between Map and Reduce

35

35
Apache Hadoop

36What is Hadoop?

Open source implementation of MapReduce
• Top-level Apache project
• Developed in Java

Platform for data storage and processing
• Scalable
• Fault tolerant
• Distributed
• Any type of complex data

38Why?

Supercomputers
(MPI, OpenMPI)

41The Hadoop 1.0 stack

42Hadoop MapReduce

Master-Slave architecture

Job Tracker (Master)
• Accepts MapReduce jobs submitted by users

• Assigns Map and Reduce tasks to TaskTrackers

• Re-executes tasks upon failure

Task Trackers (Workers)
• Run Map and Reduce tasks
• Fixed number of map and reduce slots allocated by the

administrator to each node according to its resources
• Cannot run more map tasks than map slots at any given

moment, even if no reduce tasks are running

43Putting everything together:
HDFS and Hadoop deployment

HDFS
Hadoop

44Hadoop MapReduce Client

• Define
• Mapper class
• Reducer class
• “Launching” program

• Language support
• Java
• C++
• Python

45

Word Count example in Hadoop

46Data locality

• Data locality is exposed in the map task
scheduling

• Tasks are assigned to nodes where the
needed data chunks are already present (in
HDFS) tasks where data is

• JobTracker schedules map tasks
considering
• Node-awareness
• Rack-awareness
• Non-local map tasks

47Open Issues: data locality

Data locality in the Cloud

The simplicity of map tasks scheduling leads to non-local
maps execution (25%)

Node1 Node2 Node3 Node5Node4 Node6

31 105 13 9764 5 67 1082 2 4
9 12 12 8 11 11

Empty node Empty node Empty node

Data locality is crucial for Hadoop’s performance

48Open Issues – data skew

• The current Hadoop hash partitioning for Reduce works
well when the keys are equally frequent and uniformly
stored in the data nodes

• In the presence of partitioning skew
• Variation in Intermediate Keys frequencies
• Variation in Intermediate Keys distribution among

different Data Nodes
• Native blindly hash-partitioning is inadequate and will

lead to
• Network congestion
• Unfairness in reducers inputs → Reduce computation

skew
• Performance degradation

49Open Issues – data skew

Data Node 1
K1

Hash code: (Intermediate-key) Modulo ReduceID

K1 K1 K2 K2 K2

K2 K2 K3 K3 K3 K3

K4 K4 K4 K4 K5 K6

Data Node 2
K1 K1 K1 K1 K1 K1

K1 K1 K1 K2 K4 K4

K4 K5 K5 K6 K6 K6

Data Node 3
K1 K1 K1 K2K2

K2

K1

K4 K4 K4 K4 K4

K4 K5 K5 K5 K5 K5

K1 K2 K3 K4 K5 K6K1 K2 K3 K4 K5 K6

K1 K1 K1 K2 K2 K2

K2 K2 K3 K3 K3 K3

K4 K4 K4 K4 K5 K6

K1 K1 K1 K1 K1 K1

K1 K1 K1 K2 K4 K4

K4 K5 K5 K6 K6 K6

K1 K1 K1 K2K2

K2

K1

K4 K4 K4 K4 K4

K4 K5 K5 K5 K5 K5

Data Node 1 Data Node 2 Data Node 3

Total Out Data Transfer 11 15 18 Total
44/54

Reduce Input 29 17 8

50Open Issues – single JobTracker

JobTracker has two
distinct responsibilities
• Cluster resource

management
• Task coordination

Scalability bottleneck
caused by having a single
JobTracker

1

51Limitations of Hadoop v1

• Due to this scalability issue, several smaller
and less-powerful clusters had to be created
and maintained

• Slots: harm the cluster utilization because when
all map slots are taken (and we still want more),
we cannot use any reduce slots, even if they are
available, or vice versa

• Hadoop was designed to run MapReduce jobs
only

• Need to support other programming paradigms
besides MapReduce

52Idea

Reduce the responsibilities of the single JobTracker
and delegate some of them to the many TaskTrackers

• New design by separating the responsibilities of the
JobTracker into two distinct processes

• Resource Manager - tracks live nodes and available
resources in the cluster and assigning tasks to them

• Application Master - for each submitted job, dedicated and
short-living process controls the execution of tasks within that
job only

• Thus, the coordination of a job's life cycle is spread
across all of the available machines in the cluster:

• More jobs can run in parallel, scalability dramatically
increased

53YARN: The next generation of
Hadoop's compute platform

One cluster that can run any distributed application

- Former TaskTracker

56Running Hadoop

Multiple options:
• On your local machine

• Standalone: single Java process (good for
debugging)

• Pseudo distributed: each Hadoop daemon runs
in a separate Java process

• Fully distributed
• Clusters ranging from a few nodes to extremely

large clusters with thousands of nodes

57Bibliography

• Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified
data processing on large clusters. Commun. ACM 51, 1 (January
2008), 107-113.

• Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. 2013. The family of
mapreduce and large-scale data processing systems. ACM Comput.
Surv. 46, 1, Article 11 (July 2013), 44 pages

• http://hadoop.apache.org/core/docs/current/api/
• http://hadoop.apache.org/core/docs/current/hdfs_design.html

http://hadoop.apache.org/core/docs/current/api/
http://hadoop.apache.org/core/docs/current/hdfs_design.html

