
1

Alexandru Costan

Data and Processing
Models for Big Data

2

Two worlds

Big Data
High

Performance
Computing

3HPC: Simulations and
experiments on supercomputers

3

4Big Data: Commercial and
scientific analytics on clouds

4

5

Big Data and HPC

Yet, their tools and cultures diverged…
... to the detriment of both!

Big
DataHPC

Generates

Needs

6Divergent ecosystems

C
re

di
ts

: D
an

 R
ee

d

Big
Data HPC

Storage

Processing

7

8Two ways of
processing Big Data

Batch processing
• collecting a series of data
• storing it until a given quantity of

data has been collected
• then processing all of that data

as a group – in other words, as
a batch

Real-time (stream) processing
• each piece of data is processed

as soon as it is collected
• results available virtually

instantaneously

9

Batch vs. real-time

Credits: Jay Kreps

10

Which is better for
which use-cases?

Batch vs. real-time

11Understanding
user behavior

12Recommendations

13Fraud detection

14

Correctness Latency Cost

Batch vs. real-time

15

Correctness Exact results Approximate results

Latency High-latency Low-latency

Cost Stateless Stateful

Batch vs. real-time

16State of the art:
Lambda Architectures

Historical
events

Real-
time

events

Exact
historical

model

Approximate
real-time

model

Periodic
queries

Continuous
queries

Batch processing

Stream processing

Results
&

Actions

What?

Why?

This course

Course on Algorithms for Big Data

17

23

How do we store data
today?

24

How do we store data
today?

Relational Databases
(RDBMS)

• Historically, the de-
facto standard

• Optionally equipped
with some caches

• Good for small and
medium size data

25Traditional SQL databases

26Traditional SQL databases

Issues when the dataset is just too big

27

• Began to look at multi-node database
solutions

• Known as ‘scaling out’ or ‘horizontal scaling’

• RDBMS were not designed to be distributed

• Different approaches include
• Master-slave
• Sharding

Scaling out

28Scaling RDBMS:
Master/Slave

Data replicated on slaves
• All writes are written to

the master
• All reads from the

replicated slaves
Advantage

• Good load balance for reads
Problems

• Critical reads may be incorrect as writes may not have
been propagated down

• Large datasets are duplicated: huge storage

29Scaling RDBMS:
Sharding

Data partitioned to slaves
Advantage

• Scales well for both reads
and writes

Problems
• Not transparent, application

needs to be partition-aware
• Can no longer have

relationships/joins across
partitions

• Loss of referential integrity
across shards

30How sharding works

31How sharding works

32How sharding works

What about concurrent accesses ?

33Fundamental properties
of RDBMS transactions

• Atomicity
• every operation is executed in “all-or-nothing”

fashion
• Consistency

• every transaction preserves the consistency
constraints on data: strong consistency

• Isolation
• transactions do not interfere

• Durability
• after a commit, the updates made are

permanent regardless possible failures

34Strong Consistency

35Strong Consistency

36Strong Consistency

37Big Data: network shared
data systems

In a distributed
environment ACID
guarantees are very
expensive

38Fundamental properties
of distributed data management systems

• Consistency
• All nodes see the same data at the

same time
• Availability

• Every request receives a response
• Node failures do not prevent survivors

from continuing to operate
• Partitioning

• Surviving failures of parts of the system
• The system continues to operate

despite arbitrary message loss

39CAP Theorem

• Describes the trade-
offs involved in
distributed systems

• It is impossible for a
distributed service to
provide the following
three guarantees at the
same time

• Consistency
• Availability
• Partition-tolerance

C A

P

Pick two !

40CAP Theorem

A simple example (and an informal proof)

Hotel booking: are we double-booking
the same room?

Bob Alice

Partitioning

41

A simple example (and an informal proof)

Hotel booking: are we double-booking
the same room?

No booking: give up availability
Bob Alice

Partitioning

CAP Theorem

42

A simple example (and an informal proof)

Hotel booking: are we double-booking
the same room?

Booking done: give up consistency
Bob Alice

Partitioning

CAP Theorem

43CAP Theorem
Consistency

44Forfeit consistency

Best effort consistency

Social networks

45Forfeit availability

Best effort availability

46

Can a distributed system (with
unreliable network) really be not

tolerant of partitions?

• To scale out, you have to distribute resources
• Partition is not really an option but rather a need
• The real selection is among consistency or availability

Forfeit partitions

47

Consistency or Availability

C A
P

• Consistency or Availability is not
a “binary” decision

• AP systems relax consistency in
favor of availability – but are not
inconsistent

• CP systems sacrifice availability
for consistency- but are not
unavailable

• So, both AP and CP systems
can offer a degree of
consistency and availability, as
well as partition tolerance

48“Degrees” of consistency

Strong Consistency
• After the update completes, any subsequent access

will return the same updated value

Eventual Consistency
• It is guaranteed that if no new updates are made to

object, eventually all accesses will return the last
updated value (e.g., propagate updates to replicas in a
lazy fashion)

Weak Consistency
• It is not guaranteed that subsequent accesses will

return the updated value

49Eventual consistency

50Eventual consistency

51Eventual consistency

52Eventual consistency

Facebook example
• Bob finds an interesting story and shares it with Alice by posting on

her Facebook wall
• Bob asks Alice to check it out
• Alice logs in her account, checks her Facebook wall but finds:

Nothing is there!

53Eventual consistency

Facebook example
• Reason: Facebook uses an eventual consistent model
• Why this instead of strong consistency?
• Facebook has more than 1 billion active users
• It is non-trivial to efficiently and reliably store the huge amount of

data generated at any given time
• Eventual consistent model offers the option to reduce the load and

improve availability

55Dynamic tradeoff between
Consistency and Availability

Airline reservation system
• When most of seats are available: it is ok to rely on

somewhat out-of-date data, availability is more critical

• When the plane is close to be filled: it needs more
accurate data to ensure the plane is not overbooked,
consistency is more critical

Availability

Consistency

56

BigData systems usually give up
on (strong) consistency

CAP Theorem and Big Data

Example:
NoSQL
(Not Only SQL)
databases

57

Consistency vs. Latency
tradeoff

• CAP does not force designers to give up A
or C but why there exists a lot of systems
trading C?

• Latency!

• CAP does not explicitly talk about latency...

• ... however latency is crucial to get the
essence of CAP

58Availability and Latency
are (almost) the same thing

