INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES
RENNES

INSA

Data and Processing
Models for Big Data

Alexandru Costan

.

High

Performance
Computing

Two worlds . H

INSA = HPC: Simulations and
experiments on supercomputers

4

Big Data: Commercial and
scientific analytics on clouds

INSTITUT NATIONAL

‘ DES SCIENCES
APPLIQUEES
RENNE

|| : - I‘
INSA .. Big Data and HPC

Yet, their tools and cultures diverged...
... to the detriment of both!

INSA

Divergent ecosystems -

Mahout, R and Applications Applications and Community Codes

Application Level

-

| B Hive || Pig || Sqoop || Flume FORTRAN, C, C++ and IDEs
: ; S

O N9 A % Map-Reduce Storm Domain-specific Libraries Perf &
Eg = Z Debug
| 9 (e.g.,
2 (3 Hbase BigTable 3 MPI-OpenMP S PAPD

Middleware § i§ g‘ (key-value store) CUDA/OpenCL
3|3 PFS Batch System
Storage % . |2]| HDFS (Hadoop File System) (eg, Lustre) || Scheduler || Monitoring

e

1

SMY

—

2! | VMs, Containers and Cloud Services | 3

! e e e s e e Q

System Software | ¥
» Linux OS variant Linux OS variant §

Ethernet Local Node Commodity IB+ Enet SAN +Local x86 +GPUs or g

Cluster Hardware Switches Storage X86 Racks Switches Storage Accelerators)

Data Analytics Ecosystem Computational Science Ecosystem

ProceSSin
Models

INSA':

e Two ways of . '

processing Big Data

Batch processing

Real-time (stream) processing

collecting a series of data ___.--_='_.-""—""
storing it until a given quantity of --""'“""""
data has been collected 7 Qe

then processing all of that data —_——
as a group — in other words, as
a batch

each piece of data is processed
as soon as it is collected

results available virtually
iInstantaneously

|-

I+ \l(

INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES
RENNES

INSA

Batch vs. real-time

DB sazesense :
Vehicle Position
Are we there yet? : :
i No 4&: A th t?
. . re we there yet? B B B B B S 21
“rm * Miles | Miles | Miles | Miles | Miles f Miles { Miles
&——— Yes.
Are we there yet?
- 2PM : :

No. ¢—————o

I 25.7
ETA Minutes

Credits: Jay Kreps

Batch vs. real-time ' ‘q

Which is better for
which use-cases?

INSA == Understanding .

user behavior

ONOXO

Pause Restart Quit

INSA

Recommendations l “‘

100 Milion

Q 2 Hours
S NN

Correctness

Latency

Correctness

Latency

Batch vs. real-time

Exact results

High-latency

Stateless

Approximate results
Low-latency
Stateful

INSA

State of the art: - h

Lambda Architectures

This course

Exact
historical
model

Historical meriodic >
queries
events

Real-
time
events

Approximate
real-time
model

Course on Algorithms for Big Data

Data
Models

| ‘ ‘ﬂ
INSA = How do we store data Q
today? |
!

Latency (ns) In Human Observable Terms

Seconds
Hours x

B a
INSRI= How do we store data .

today?

Relational Databases
(RDBMS)

» Historically, the de-
facto standard

* Optionally equipped
with some caches

 Good for small and
medium size data

|-

INSA

DT T -
ID Name

S I A +
14 David Singleton
27 Joseph Bonneau
52 Pete Warden

L T e T T +

TABLE lectures

T S R L TR +
ID Title Lecturer
4o LTS Fommmmmmeaa +

1 BD at Google 14
2 Overview of BD 27
3 Algorithms for BD 27
4 BD at startups 14
" TR S T T L +

|-

27 | Joseph Bonneau
52 Pete Warden
I N—— X R —————— +

TABLE lectures

R T T T

1 BD at Google

2 Overview of BD

3 Algorithms for BD
4 BD at startups

S T S R

14 David Singleton |-

most interesting

_— queries require
computing joins
- PP fﬁ ----- +
Lecturer
I . +
14"
27
27
14
S +

Issues when the dataset is just too big

|-

INSA 5 Scaling out L
scue- @0— 00—

sacor @B+ @D+ @)
* Began to look at multi-node database
solutions

« Known as ‘scaling out’ or ‘horizontal scaling’
« RDBMS were not designed to be distributed

» Different approaches include

« Master-slave

» Sharding
.

INSA Scaling RDBMS: ‘ %
Master/Slave
Data replicated on slaves l B : X
. All writes are written to @ @ @ @
the maSter MASTER SLAVE 1 SLAVE 2 SLAVE 3
Reéds Raéds Regds
 All reads from the W’i‘“ | | |
replicated slaves Cig Cfgz Cg
Advantage
e Good load balance for reads
Problems

« Critical reads may be incorrect as writes may not have
been propagated down

 Large datasets are duplicated: huge storage
.

INSH=" Scaling RDBMS: W

Sharding
Data partitioned to slaves
Advantage
« Scales well for both reads @
and writes m —
Problems Dt B ==

no |s_name| s_age

* Not transparent, application s'; SN :{>¥‘/
i park | 13 /—_\

needs to be partition-aware =y (it
« Can no longer have N e

relationships/joins across

partitions e

* Loss of referential integrity
across shards

|-

INSAZ=" How sharding works u "ﬂ

AT KT R £ &7
O
_ master

/

INSAZ How sharding works .I "‘

O O O O
000000
@mwer

_Ba8 .

INSAZ= How sharding works ! %

a?

master

KW

\What about concurrent accesses ?
T

of RDBMS transactions
* Atomicity
* every operation is executed in “all-or-nothing”
fashion

 Consistency

* every transaction preserves the consistency
constraints on data: strong consistency

 |solation
 transactions do not interfere
* Durability

« after a commit, the updates made are
permanent regardless possible failures

|-

INSA == Strong Consistency ‘ a
read(a) =1
Xiuying >
read(a) = 1
Yves g
read(a) = 1
Zaira g

INSA == Strong Consistency - H

o read(a) =1 write(a) = 2
Xiuying -
read(a) =1
Yves g
read(a) = 1
Zaira >

INSA == Strong Consistency - QG

o read(a) = 1 write(a) = 2 read(a) = 2
Xiuying >
read(a) =1 read(a) = 2
Yves >
read(a) = 1 read(a) = 2
Zaira >

In a distributed
environment ACID
guarantees are very
expensive

|-

:‘
25z
2as
=]
=
B3
w
=
o
=
>
=

EEEEEEEEEEE

~~~~~~ Fundamental properties
of distributed data management systems

3

Consistency

« All nodes see the same data at the
same time

Availability
 Every request receives a response
 Node failures do not prevent survivors
from continuing to operate
Partitioning
* Surviving failures of parts of the system

 The system continues to operate
despite arbitrary message loss

|-



INSA

CAP Theorem ‘ ﬁ

 Describes the trade-
offs involved in
distributed systems

 Itis impossible for a
distributed service to
provide the following
three guarantees at the
same time

 Consistency
* Availability
* Partition-tolerance

Pick two !

|-



INSA == CAP Theorem “ ﬁ

A simple example (and an informal proof)

Hotel booking: are we double-booking
the same room?

Partitioning

=» 0 L O =

Bob Alice




INSA =55 CAP Theorem i

A simple example (and an informal proof)

Hotel booking: are we double-booking
the same room?

Partitioning

'
fA
el
\

JJ‘I<:
&
#
B
e
%
(R

Bob Alice
No booking: give up availability

|-




INSA =5 CAP Theorem

A simple example (and an informal proof)

Hotel booking: are we double-booking
the same room?

- @O & |

Bob Alice
Booking done: give up consistency

|-




INSA

CAP Theorem ‘ h

Consistency

C

Claim: every distributed
system is on one side of the
triangle.

CP: always consistent, even in a
partition, but a reachable replica may

deny service without agreement of the
others (e.g., quorum).

CA: available, and consistent,
unless there is a patrtition.

A AP: a reachable replica provides P
. ‘1 service even in a partition, but may " ‘1
Avalilability T e Partition-resilience

[



|-

. ® e : | g
sriak S<€ o
cassandra CouchDB

Examples
» Social networks
»  Web caching
» DNS

Traits
» expirations/leases
» conflict resolution
»  Optimistic

Best effort consistency



INSA == Forfeit availability ‘ «

.mongoDB é redis

Examples
» Distributed databases
Availability » Distributed locking
» Majority protocols

Traits
» Pessimistic locking

» Make minority partitions
unavailable

Best effort availability

|-



INSA

Forfeit partitions ‘ «
MHS& 'S

PostgreSQL

Examples
Single-site databases

Cluster databases
LDAP

Fiefdoms

v VvV Vv Vv

Traits
» 2-phase commit

L e—_—— cache validation protocols

Partitions Can.a distributed system (with
unreliable network) really be not
tolerant of partitions?

« To scale out, you have to distribute resources
« Partition is not really an option but rather a need
* The real selection is among consistency or availability



Consistency or Availability is not
a “binary” decision

AP systems relax consistency in
favor of availability — but are not
Inconsistent

CP systems sacrifice availability
for consistency- but are not
unavailable

So, both AP and CP systems
can offer a degree of
consistency and availability, as
well as partition tolerance

|-




Strong Consistency

« After the update completes, any subsequent access
will return the same updated value

Eventual Consistency

 lItis guaranteed that if no new updates are made to
object, eventually all accesses will return the last
updated value (e.g., propagate updates to replicas in a
lazy fashion)

 |tis not guaranteed that subsequent accesses will
return the updated value

|-



INSA = Eventual consistency

<

read(a) =1 write(a) = 2
Xiuying >
read(a) = 1
Yves =
read(a) = 1 .
Zaira >



INSA = Eventual consistency ‘ ‘ﬂ
read(a) =1 write(a) = 2 read(a) =1
Xiuying >
read(a) = 1 read(a) = 2
Yves =
read(a) = 1 read(a) = 1
Zaira >




INSA = Eventual consistency ‘ ‘q
read(a) = 1 write(a) = 2 read(a) = 1 read(a) = 2
Xiuying . . >
read(a) =1 read(a) = 2
Yves 5 >
read() = 1 ceall@i=1 | readta}=2
Zaira y : >
Inconsistent window



INSA="  Eventual consistency

Facebook example

Bob finds an interesting story and shares it with Alice by posting on
her Facebook wall

Bob asks Alice to check it out
Alice logs in her account, checks her Facebook wall but finds:

Nothing is there!

Wall 9
é o d facebook [mmd




INSA

=  Eventual consistency ‘ ‘ﬂ

Facebook example

« Reason: Facebook uses an eventual consistent model

« Why this instead of strong consistency?
« Facebook has more than 1 billion active users

 [tis non-trivial to efficiently and reliably store the huge amount of
data generated at any given time

« Eventual consistent model offers the option to reduce the load and
improve availability




Consistency and Availability
Airline reservation system

* When most of seats are available: it is ok to rely on
somewhat out-of-date data, availability is more critical

Il W y
Ol EEE = /& :
= /’
AAAAAA i
Noe o2 o2 e = 2 2 -Availability~ /
st Y

 When the plane is close to be filled: it needs more
accurate data to ensure the plane is not overbooked,

consistency is more critical

wwwwww

— — -— — — - — —

1‘| o~
Co
¢ M

r/’
ii_sm)l




BigData systems usually give up
on (strong) consistency

Example:
NoSQL

(Not Only SQL)
databases

HOW TO WRITE A CV




tradeoff

» CAP does not force designers to give up A
or C but why there exists a lot of systems
trading C?

» Latency!

» CAP does not explicitly talk about latency...

* ... however latency is crucial to get the
essence of CAP

|-



INSA

= Availability and Latency . h

are (almost) the same thing

* High Availability is a strong requirement of modern shared-data systems

High
Availability

* To achieve High Availability, data and services must be replicated

Replication

* Replication impose consistency maintenance ]

 Every form of consistency requires communication and a stronger
consistency requires higher latency

|-



