
1

Alexandru Costan

Data and Processing 
Models for Big Data



2

Two worlds

Big Data
High 

Performance 
Computing



3HPC: Simulations and 
experiments on supercomputers  
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4Big Data: Commercial and 
scientific analytics on clouds 
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Big Data and HPC

Yet, their tools and cultures diverged… 
... to the detriment of both! 

Big 
DataHPC

Generates

Needs
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8Two ways of 
processing Big Data

Batch processing
• collecting a series of data
• storing it until a given quantity of 

data has been collected
• then processing all of that data 

as a group – in other words, as 
a batch

Real-time (stream) processing
• each piece of data is processed 

as soon as it is collected
• results available virtually 

instantaneously
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Batch vs. real-time

Credits: Jay Kreps
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Which is better for 
which use-cases?

Batch vs. real-time



11Understanding
user behavior



12Recommendations



13Fraud detection
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Correctness  Latency Cost

Batch vs. real-time
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Correctness Exact results Approximate results

Latency High-latency Low-latency

Cost Stateless Stateful

Batch vs. real-time



16State of the art:
Lambda Architectures

Historical 
events

Real-
time 

events

Exact 
historical 

model

Approximate 
real-time 

model

Periodic 
queries

Continuous 
queries

Batch processing

Stream processing

Results 
& 

Actions

What?

Why?

This course

Course on Algorithms for Big Data
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How do we store data 
today?
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How do we store data 
today?

Relational Databases 
(RDBMS)

• Historically, the de-
facto standard

• Optionally equipped 
with some caches

• Good for small and 
medium size data



25Traditional SQL databases



26Traditional SQL databases

Issues when the dataset is just too big
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• Began to look at multi-node database 
solutions

• Known as ‘scaling out’ or ‘horizontal scaling’

• RDBMS were not designed to be distributed

• Different approaches include 
• Master-slave
• Sharding

Scaling out



28Scaling RDBMS:
Master/Slave

Data replicated on slaves
• All writes are written to 

the master
• All reads from the 

replicated slaves
Advantage

• Good load balance for reads 
Problems

• Critical reads may be incorrect as writes may not have 
been propagated down

• Large datasets are duplicated: huge storage



29Scaling RDBMS:
Sharding

Data partitioned to slaves
Advantage

• Scales well for both reads 
and writes

Problems
• Not transparent, application 

needs to be partition-aware
• Can no longer have 

relationships/joins across 
partitions

• Loss of referential integrity 
across shards



30How sharding works



31How sharding works



32How sharding works

What about concurrent accesses ?



33Fundamental properties 
of RDBMS transactions

• Atomicity
• every operation is executed in “all-or-nothing” 

fashion 
• Consistency

• every transaction preserves the consistency 
constraints on data: strong consistency

• Isolation
• transactions do not interfere 

• Durability
• after a commit, the updates made are 

permanent regardless possible failures 
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36Strong Consistency



37Big Data: network shared 
data systems

In a distributed 
environment ACID
guarantees are very 
expensive



38Fundamental properties 
of distributed data management systems

• Consistency
• All nodes see the same data at the 

same time 
• Availability

• Every request receives a response
• Node failures do not prevent survivors 

from continuing to operate 
• Partitioning

• Surviving failures of parts of the system
• The system continues to operate 

despite arbitrary message loss 



39CAP Theorem

• Describes the trade-
offs involved in 
distributed systems

• It is impossible for a 
distributed service to 
provide the following 
three guarantees at the 
same time

• Consistency
• Availability
• Partition-tolerance  

C A

P

Pick two !



40CAP Theorem

A simple example (and an informal proof)

Hotel booking: are we double-booking 
the same room?

Bob Alice

Partitioning 
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A simple example (and an informal proof)

Hotel booking: are we double-booking 
the same room?

No booking: give up availability
Bob Alice

Partitioning 

CAP Theorem
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A simple example (and an informal proof)

Hotel booking: are we double-booking 
the same room?

Booking done: give up consistency
Bob Alice

Partitioning 

CAP Theorem



43CAP Theorem
Consistency



44Forfeit consistency

Best effort consistency

Social networks



45Forfeit availability

Best effort availability 
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Can a distributed system (with 
unreliable network) really be not 

tolerant of partitions?

• To scale out, you have to distribute resources
• Partition is not really an option but rather a need
• The real selection is among consistency or availability

Forfeit partitions 
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Consistency or Availability

C A
P

• Consistency or Availability is not 
a “binary” decision

• AP systems relax consistency in 
favor of availability – but are not 
inconsistent

• CP systems sacrifice availability 
for consistency- but are not 
unavailable

• So, both AP and CP systems 
can offer a degree of 
consistency and availability, as 
well as partition tolerance



48“Degrees” of consistency

Strong Consistency
• After the update completes, any subsequent access 

will return the same updated value

Eventual Consistency
• It is guaranteed that if no new updates are made to 

object, eventually all accesses will return the last 
updated value (e.g., propagate updates to replicas in a 
lazy fashion)

Weak Consistency
• It is not guaranteed that subsequent accesses will 

return the updated value
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52Eventual consistency

Facebook example 
• Bob finds an interesting story and shares it with Alice by posting on 

her Facebook wall
• Bob asks Alice to check it out
• Alice logs in her account, checks her Facebook wall but finds:

Nothing is there!



53Eventual consistency

Facebook example
• Reason: Facebook uses an eventual consistent model
• Why this instead of strong consistency?
• Facebook has more than 1 billion active users
• It is non-trivial to efficiently and reliably store the huge amount of 

data generated at any given time
• Eventual consistent model offers the option to reduce the load and 

improve availability 



55Dynamic tradeoff between 
Consistency and Availability

Airline reservation system
• When most of seats are available: it is ok to rely on 

somewhat out-of-date data, availability is more critical

• When the plane is close to be filled: it needs more 
accurate data to ensure the plane is not overbooked, 
consistency is more critical

Availability

Consistency
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BigData systems usually give up 
on (strong) consistency

CAP Theorem and Big Data

Example: 
NoSQL 
(Not Only SQL) 
databases
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Consistency vs. Latency 
tradeoff

• CAP does not force designers to give up A 
or C but why there exists a lot of systems 
trading C?

• Latency!

• CAP does not explicitly talk about latency...

• ... however latency is crucial to get the 
essence of CAP



58Availability and Latency 
are (almost) the same thing


