
CH8: CONSTRAINT (LOGIC) PROGRAMMING

A BRIEF INTRODUCTION
(NOT COVERED DURING LECTURES)

Prof. Mireille Ducassé

Last update: April 2023

Computer Science Department

Sudoku 1/14
4 5

3 2 9

8 6 9 1 2 3

7 5

8

7 9 2 6

6 7 3

3 6 9

1

The challenge is to fill the
grid with numbers
from 1 to 9 such that
every row, every
column, and every 3x3
sub-grid contains the
digits 1 to 9.

• Fill in 1 slot, explain
why this is a valid
step

3

Allow yourself some time to search before looking at solutions 😀

Sudoku 1bis/14
7 4 5

3 2 9

4 8 6 9 1 2 3

7 5

8

7 9 2 6

6 7 3

3 6 9

1

• Column constraints : 7
• Line constraint + block

constraint : 4

Sudoku 2/14

1. In the next grid, finish to remove the
impossible values due to the initially given
values
– Has the order an impact on the amount of values

removed ?

2. On what to reason next ?
– A square ? A line ? A column ?
– Which one ? And why ?

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3

3 24 5 6

7 8 9

1 2 3

8 64 5 6

7 8 9

1 2 3 1 2 3

44 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

9
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

8
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3

24 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

7 9
1 2 3

4 5 6

7 8 9

1 2 3

6 74 5 6

7 8 9

1 2 3 1 2 3

34 5 6 4 5 6

7 8 9 7 8 9

1
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

5
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3

94 5 6 4 5 6

7 8 9 7 8 9

1 2 3

7
1 2 3

54 5 6

7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3

6
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

3
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3

6
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

9
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

3/14

Sudoku 4/14
1. Assume we take the upper left most

square, what can be deduced ?
1. .

2. .

3. .

4. .

5. .

8

Allow yourself some time to search before looking at solutions 😀

Sudoku 4bis/14
What can be deduced ?

1. l1.c1 can only contain 9
• remove 9 from the rest of line 1, col 1, square 1

2. 1 can only be in the first line
• remove 1 from line 1 in other squares

3. 7 can only be in l1.c2
• 1 can thus not be in l1.c2
• remove 7 from the rest of line 1, col 2

4. 1 can only be in l1.c3
• 5 cannot be in l1.c3
• remove 1 from the rest of c3

5. 4 and 5 can only be in col 1
1. remove 4 and 5 from col 1 in other squares

What would have happened if we had taken step 3
in second ?

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3

3 24 5 6

7 8 9

1 2 3

8 64 5 6

7 8 9

Sudoku 5/14

1. What happens if only half of the numbers are
initially given ?

2. What if the given numbers are randomly
changed ?

Sudoku 6/14

• In the next grid, all impossible values have
been removed

• We should try values
– on which cell(s) does it seem the most promising

and why ?

1 2 3 1 2 3

34 5 6 4 5 6

7 8 9 7 8 9

1 2 3

4
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3

3
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3

64 5 6 4 5 6

7 8 9 7 8 9

5 1 4

3 8 9

3 5 4

8 9 7

6 2 1

4 7 5

9 1 8

2 3 6

1 2 3

9 24 5 6

7 8 9

3 6 1

1 2 3

7 54 5 6

7 8 9

1 8 9

2 3 6

5 4 7

1 2 3

6
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3

5
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

9 1
1 2 3

4 5 6

7 8 9

6 2
1 2 3

4 5 6

7 8 9

7 5
1 2 3

4 5 6

7 8 9

7/14

13

Allow yourself some time to search before looking at solutions 😀

Sudoku 6bis/14

Cell(s) where it seems most promising to try
values
– those with only 2 values left
– those with a value that appears often “as

possible” in other cells
– ...

Sudoku 8/14

• In the next grid we have tried 7, a possible
value, for l1.c1 and removed all impossible
values
– what can be noticed ?

• Try 7 at cell l2.c4 and propagate
– what happens ?

1 2 3 1 2 3

34 5 6 4 5 6

7 8 9 7 8 9

1 2 3

4
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3

3
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3

64 5 6 4 5 6

7 8 9 7 8 9

5 1 4

3 8 9

3 5 4

8 9 7

6 2 1

4 7 5

9 1 8

2 3 6

1 2 3

9 24 5 6

7 8 9

3 6 1

1 2 3

7 54 5 6

7 8 9

1 8 9

2 3 6

5 4 7

1 2 3

6
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3

5
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

9 1
1 2 3

4 5 6

7 8 9

6 2
1 2 3

4 5 6

7 8 9

7 5
1 2 3

4 5 6

7 8 9

9/14

17

Allow yourself some time to search before looking at solutions 😀

1 2 3 1 2 3

34 5 6 4 5 6

7 8 9 7 8 9

1 2 3

4
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

1 2 3

3
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3

64 5 6 4 5 6

7 8 9 7 8 9

5 1 4

3 8 9

3 5 4

8 9 7

6 2 1

4 7 5

9 1 8

2 3 6

1 2 3

9 24 5 6

7 8 9

3 6 1

1 2 3

7 54 5 6

7 8 9

1 8 9

2 3 6

5 4 7

1 2 3

6
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3

5
1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9

9 1
1 2 3

4 5 6

7 8 9

6 2
1 2 3

4 5 6

7 8 9

7 5
1 2 3

4 5 6

7 8 9

Failure !
We need to
backtrack

9bis/14

Remarks

• Removing all the impossible values does not
necessarily lead to a single solution
– Failures can occur
– Several values per slots may still be possible

• Values have to be tried

• Trying a value is in general insufficient
– Propagating inconsistent values is necessary

Ø In the general case, the two aspects have to be
executed in turn

Sudoku 10/14

• What are the parameters of the previous reasoning ?
– How are chosen the particular objects to reason upon ?

1. .
2. .
3. ...

– Which actions are used ?
1. .
2. .
3. .
4. .

21

Allow yourself some time to search before looking at solutions 😀

Sudoku 10bis/14

• What are the parameters of the previous reasoning ?
– How are chosen the particular objects to reason upon ?

1. the most constrained, or
2. the first one in a line, or
3. ...

– Which actions are used ?
1. detect only possible values at a given slot, line, column, square

using different heuristics
2. remove impossible values at a given place, line, column, square

propagating constraints
3. try a value at a given slot
4. backtrack on failures
5. ...

Sudoku 11/14

• What is difficult for human-beings ?

• What is difficult for computers ?

24

Allow yourself some time to search before looking at solutions 😀

Sudoku 11bis/14

• What is difficult for human-beings ?
– to choose heuristics and places to reason upon
– to apply heuristics consistently
– to remember what has already been tried
– to backtrack (what to undo? in which order ?

until where ?)

• What is difficult for computers ?
– to choose heuristics and places to reason upon

Sudoku: ~50 lines of
a C++ program of 262 lines

static int disambiguate_board(int board[9][9]) {
int game_solved = 0;
int changed = 1;
int invalid = 0;

while ((changed) && (!invalid)) {
game_solved = 0;
changed = 0;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
int square_base_y = i*3;
int square_base_x = j*3;
for (int k = 0; k < 3; ++k) {
for (int l = 0; l < 3; ++l) {
int definite = 0;
for (int m = 1; m <= 9; ++m) {
if (onlies[m] == board[square_base_y+k][square_base_x+l]) definite = m;

}
if (definite) {
for (int n = 0; n < 3; ++n) {
for (int o = 0; o < 3; ++o) {
if ((n != k) || (o != l)) {
int before = board[square_base_y+n][square_base_x+o];
board[square_base_y+n][square_base_x+o] &= negates[definite];
if (before != board[square_base_y+n][square_base_x+o]) changed++;
if (board[square_base_y+n][square_base_x+o] == 0x000) invalid++;

}}}}}}}}

for (int i = 0; i < 9; ++i) {
for (int j = 0; j < 9; ++j) {
int definite = 0;
for (int m = 1; m <= 9; ++m) {
if (onlies[m] == board[i][j]) definite = m;

}
if (definite) {
for (int k = 0; k < 9; ++k) {
if (k != i) {
int before = board[k][j];
board[k][j] &= negates[definite];
if (before != board[k][j]) changed++;
if (board[k][j] == 0x000) invalid++;

}
if (k != j) {
int before = board[i][k];
board[i][k] &= negates[definite];
if (before != board[i][k]) changed++;
if (board[i][k] == 0x000) invalid++;

}}}}}
for (int i = 0; i < 3; ++i) {

for (int j = 0; j < 3; ++j) {
for (int m = 1; m <= 9; ++m) {
int count = 0;
int posx = -1;
int posy = -1;
for (int k = 0; k < 3; ++k) {
for (int l = 0; l < 3; ++l) {
int y = (i*3)+k;
int x = (j*3)+l;
if (board[y][x] & onlies[m]) {
posy = y;
posx = x;
count++;

}}}
…

Note the
number of
nested loops !!

The whole ECLiPSe-CLP demo program
:- lib(ic).
:- import alldifferent/1 from ic_global.

solve(SudokuName) :-
problem(SudokuName, Board),
print_board(Board),
sudoku(Board),
print_board(Board).

sudoku(Board) :-
dim(Board, [9,9]),
Board :: 1..9,
col_and_rows_all_diff(Board),
sub_square_all_diff(Board),
labeling(Board).

col_and_rows_all_diff(Board) :-
(for(I, 1, 9),

param(Board)
do

Row is Board[I, 1..9],
alldifferent(Row),
Col is Board[1..9, I],
alldifferent(Col)

).

sub_square_all_diff(Board) :-
(multifor([I, J], 1, 9, 3),

param(Board)
do

(multifor([K, L], 0, 2),
param(Board, I, J),
foreach(X, SubSquare)

do
X is Board[I+K, J+L]

),
alldifferent(SubSquare)

).

print_board(Board) :-
dim(Board, [9,9]),
(for(I,1,9), param(Board) do

(for(J,1,9), param(Board,I) do
X is Board[I,J],

(var(X) -> write(" _") ; printf(" %2d",
[X]))

),
nl

),
nl.

%--
% Sample data

problem(sudoku1, [](
[](_, _, 2, _, _, 5, _, 7, 9),
[](1, _, 5, _, _, 3, _, _, _),
[](_, _, _, _, _, _, 6, _, _),
[](_, 1, _, 4, _, _, 9, _, _),
[](_, 9, _, _, _, _, _, 8, _),
[](_, _, 4, _, _, 9, _, 1, _),
[](_, _, 9, _, _, _, _, _, _),
[](_, _, _, 1, _, _, 3, _, 6),
[](6, 8, _, 3, _, _, 4, _, _))).

Two nested
loops only

Sudoku 14/14
• Which program is easier to understand ?
• Which one is easier to maintain ?
• Which one is easier to tune ?
• Which version is easier to write?
• Where does the “miracle” come from ?
– The CLP version states what has to be done
• A solver addresses how it is achieved, and in an

optimized way

– A lot of research and work has been invested in
existing solvers : no need to re-invent the wheel

• Let X1, . . . , Xn be a finite sequence of variables
• each associated with a set of possible values

called its domain, D1, . . . , Dn

• A constraint on X1, . . . , Xn is a relation, included
in D1 × · · · × Dn

• Rm: constraint ≣ relation ≣ equation

What is a constraint?

Constraint programming

1. Modeling: Formulate the problem as a finite
set of constraints
– a Constraint Satisfaction Problem (CSP)

2. Solving: Solve the CSP
– if possible by using a constraint programming

system

3. Mapping: Map the solution to the CSP to a
solution to the original problem

The Constraint Satisfaction Problem

• An instance of the Constraint Satisfaction Problem
(CSP) consists of
– a finite set of variables, X1, . . . ,Xn,
– for each variable Xi a set of values, Di, called its domain,
– a finite set of constraints. Each restricts the values that the

variables can simultaneously take.
• Examples: x ≠y. x+y≤z

• A total assignment maps each variable to an element in
its domain.
– It is a total function

• A solution to an instance of the constraint satisfaction
problem is a total assignment that satisfies all the
constraints.

The Constraint Satisfaction Problem

Given an instance of CSP the goal is usually one of
– determine whether the instance has any solutions

• In that case the CSP is said consistent or feasible
– find any solution
– find all solutions
– find a solution that optimizes some given objective

function
– Determine that there is no solution (refutation)

• Note that in many cases finding a solution (even if
not optimal) is already very useful (and can already
be a challenge)

Constraint Logic Programming

• The advantage of Constraint Logic
Programming is that it offers both
– backtracking
• traversal of the control flow search space

– constraint propagation
• filtering/pruning of the data space

“Constraint” problems
• Puzzles
• Planning and Scheduling
– Assignment problems
– Jobshop Scheduling
– Warehouse location
– Ecologist traveler
– Covering a square with smaller squares of different sizes.
– Scheduling players for sport tournaments
– Computing a staff roster
– Airline crew scheduling
– ...

Characteristics of
“constraint” problems

• There are no general methods or algorithms
– NP-completeness (cf complexity course)

• Different strategies and heuristics have to be
tested
– different input data may lead to different

strategies
• Requirements are quickly changing
– Programs should be flexible enough to adapt to

these changes rapidly

Remarks
• Solvers significantly ease the resolution of “constraint problems”

– Especially important for large complex problems
but
• Each solver has its own algorithms and heuristics in order to

propagate constraints
• These algorithms and heuristics are in general quite complex

– Choosing proper solvers is an issue
– Choosing a relevant model is an issue
– Using proper strategies inside the solvers is also an issue

Background knowledge is mandatory.
– I recommend to follow some course, for example on ECLiPSE ELearning

Website
• video lectures, slides, handouts and other material
• 20 (!) chapters
• An impressive lists of applications
• by Helmut Simonis
• http://www.eclipseclp.org/ELearning/

36

http://www.eclipseclp.org/ELearning/

