
Ch 7 – Synthesis

Mireille Ducassé

Last revision April 2024

Computer Science
Department

Why Prolog ?
• A new programming philosophy
• Language relevant for
– Knowledge management
– Ar/ficial intelligence (reasoning, planning, expert

systems, games, etc.)
– Automa/c language processing
– E-learning
– Bioinforma/cs
– Op/miza/on, decision support

• Used in industry, in par9cular for its constraint
programming aspect

Specificity of Prolog

• Logic =>
– You specify what is true
– You let the interpreter prove queries and build

solu6ons for you
• it handles how to do it

ØMuch less low-level aspects to care about

Exercise 7.1: code reading

• It is crucial to “read” code as logical asser9ons
• Paraphrase in English the following code (make

sure to “translate” everything)
• How could you test it ?
• When and how was it used in exercises ?

member(X, [X | _]).
member(X, [_ | T]):-

member(X, T).

Take your *me to search, code and test your
own program

Then take your *me to understand the
following solu*on

5

Exercise 7.1: code reading (bis)
• Paraphrase in English the following code (make sure to

“translate” everything)
member(X, [X | _]).
member(X, [_ | T]):-

member(X, T).

• How could you test it ?
?- member(a, [c, b, a]). -> Yes
?- member(X, [c, b, a]). -> Yes X=c ; X=b ; X=a
?- member(d, [c, b, a]). -> No

• When and how was it used in exercises ?
– extensively in the Zebra code

It is true that an element X is a
member of a list L
if X is the first element of L
or
if X is a member of the tail of L.

(MAIN) KEY FEATURES OF PROLOG
Summary of this course

(Main) Key features of Prolog

• Unifica:on
• Recursion
• Lists
• Search tree
• Extra-logical predicates
• Compiler and interpreter

Exercise 7.2: Unifica>on

?- hello = 3.

?- A=3.

?- A=Y.

?- p(a,b) = p(A,B,C).

?-p(p(a), p(p(a))) = p(X, Y).

?- p(p(a), Y) = p(X, p(p(a))).

?- p(A) = A.

?- [3, Y] = [A, foo].

?- [3 | Y] = [A, foo].

?- [3, a, hello | Y] = [A | Foo].

?- X = 3*7.

?- X is 3*7.

?- 21 is 3*X.

• UnificaHon is the key stone of Prolog interpreters
• Answer the following queries

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

10

Exercise 7.2: Unifica>on (bis)
?- hello = 3.

No
?- A=3.

A=3, Yes
?- A=Y.

A=Y, Yes
?- p(a,b) = p(A,B,C).

No
?-p(p(a), p(p(a))) = p(X, Y).

X=p(a), Y=p(p(a)), Yes
?- p(p(a), Y) = p(X, p(p(a))).

X=p(a), Y=p(p(a)), Yes
?- p(A) = A.

Error

?- [3, Y] = [A, foo].
Y=foo, A=3, Yes

?- [3 | Y] = [A, foo].
Y=[foo], A=3, Yes

?- [3, a, hello | Y] = [A | Foo].
Foo=[a, hello | Y], A=3, Yes

?- [3 | Y] = [A | foo].
No

?- X = 3*7.
X = 3*7

?- X is 3*7.
X = 21

?- 21 is 3*X.
Error

Recursion and Lists

• Recursion replaces itera/on of impera/ve
programming

• Much safer to program with
– … once well understood J

• Lists are the main data structures of Prolog
– Remember [Head | Tail]
– In case of doubts check chapter 3

Design pattern: list processing
Pattern 1: Computing a result list

do_list([], <base result>).
do_list([Head | Tail], [HRes |TRes]) :-

do_one(Head , HRes),
do_list(Tail, TRes).

End result is concatenated at the end of the recursions

Equivalent to

do_list([], <base result>).
do_list(Arg1, Arg2) :-

Arg1= [Head | Tail],
Arg2= [HRes |TRes]
do_one(Head , HRes),
do_list(Tail, TRes).

Design paBern: list processing and
coun>ng

do_list([], <base result>, 0).
do_list([Head | Tail], [Head_Res |Tail_Res], N) :-

do_one(Head , Head_Res, N1),
do_list(Tail, Tail_Res, Nt),
N is N1+Nt. Remember that is/2

must be called only when
the right-hand side
variables have become
ground

Design paBern: directed graph
traversal with intermediate results

collected

path(A, B, []) :-
edge(A, B).

path(A, B, [C |Path]) :-
edge(A, C),
path(C, B, Path).

Equivalent to

path(A, B, Path) :-
Path = [],
edge(A, B).

path(A, B, Path0) :-
edge(A, C),
path(C, B, Path),
Path0 = [C |Path].

Search tree: ?- path(a, e, P).
path(A, B, []) :-

edge(A, B).
path(A, B, [C |Path]) :-

edge(A, C),
path(C, B, Path).

edge(a, b).
edge(a, c).
edge(b, d).
edge(c, d).
edge(d, e).

Clause 1,
A/a, B/e, P/[]

?- path(a, e, P).

path(A, B, [])

?- edge(a, e)

fail

?- path(a, e, P).

path(A, B, [C| Path])

?- edge(a, C) , path(C, e)

edge(a,b)

Clause 2,
A/a, B/e,
P/[C| Path]

?- path(b, e, Path).

path(A1, B1, [])
Clause 1,
A1/b, B1/e, Path/[]

Fact, C/b

?- edge(b, e)

fail

?- path(b, e, Path).

Write the next steps of execution until the first solution,
then compute “Path” using the chain of substitutions

Success
branch: ?-

path(a, e, P).

path(A, B, []) :-
edge(A, B).

path(A, B, [C |Path]) :-
edge(A, C).
path(C, B, Path).

edge(a, b).
edge(a, c).
edge(b,d).
edge(c,d).
edge(d, e)

Fact, C1/d

?- path(d, e, Path1).

path(A2, B2, [])

Fact, C/b

?- path(a, e, P).

path(A, B, [C| Path])

?- edge(a, C)

edge(a,b)

Clause 2,
A/a, B/e,
P/[C| Path]

?- path(b, e, Path).

path(A1, B1, [C1|Path1])

Clause 2,
A1/b, B1/e, Path/[C1|Path1]?- edge(b, C1)

edge(b, d)

Clause 1,
A2/d, B2/e, Path1/[]

?- edge(d, e)
Success

The result comes from the series of
substitutions:
P/[C| Path], C/b, Path/[C1|Path1],
C1/d, Path1/[]

P= [b, d]

Extra-logical predicates
• Extra-logical predicates
– is/2

• right-hand side argument must be ground at calling 6me
– comparison operators (</2, >/2, =</2, >=/2)

• all arguments must be ground at calling 6me
– not P

• P arguments must be ground at calling 6me
– !/1 (cut)

• prunes branches in the search tree
• beware not to lose solu6ons

• ⚠ To be tested even more thoroughly than the other
predicates

Compiler and Interpreter
When programming
• edit one or several files to define the predicates

related to a given subject, domain or problem
• compile the files
• make sure there are no more compilation errors

or warnings
– Remember that an error can occur earlier than the

place where the compiler detects it
• run queries under the interpreter
– Any predicate defined in your compiled files (or in the

built-in predefined libraries) can be called directly
• test each predicate as soon as you define it
– Do not wait that the job is finished
– The answer would most probably be “No”

Flexibility

• Cf french_menu exercises
• we started with very simple solu/ons and

easily improved them step by step

ØPrototyping language
• easy to test new ideas
• oLen efficient even if you have to program in

another language aLerwards

Exercise 7.3: ground_list/1
• Write predicate ground_list(+List) that succeeds if

every element of List is ground (namely it does
not contain any variable).

• Hint: use predefined predicate ground/1.

?- ground_list([a, 1, [x, y]]).
yes
?- ground_list([a, 1, [X, y]]).
no

• Once your code it tested, paraphrase it.

Take your *me to search, code and test your
own program

Then take your *me to understand the
following solu*on

22

ex. 7.3: ground_list/1 (bis)
Write predicate ground_list(+Pred, +List) that succeeds if
every element of List is ground.
?- ground_list([a, 1, [x, y]]).
yes
?- ground_list([a, 1, [X, y]]).
no

ground_list([]).
ground_list([H | T]) :-

ground(H),
ground_list(T).

A list is said to be ground if
it is empty

or
its head is ground
(it contains no variable)
and
its tail is recursively a ground list

Exercise 7.4: separate_numbers/3
• Write predicate separate_numbers(+L, ?LN, ?LO) that

succeeds if the arguments of list L that are numbers are
extracted into list LN, the other arguments are in list LO.

• Note that we do not ask for numbers inside structures.
• Hint: use predefined predicate number/1.

?- separate_numbers([a, 1, 2, X, [1, 2], 3], LN, LO).
X = X
LN = [1, 2, 3]
LO = [a, X, [1, 2]]
?- separate_numbers([a, 1, 2, X, [4, 5], 3],[1, 2, 4, 5, 3], LO).
No

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

25

Ex. 7.4: separate_numbers/3 (bis)
?- separate_numbers([a, 1, 2, X, [1, 2], 3], LN, LO).
X = X
LN = [1, 2, 3]
LO = [a, X, [1, 2]]
?- separate_numbers([a, 1, 2, X, [4, 5], 3],[1, 2, 4, 5, 3], LO).
No

/* predicate separate_numbers(+L, ?LN, ?LO) */
separate_numbers([], [], []).
separate_numbers([H | T], [H | LN], LO) :-

number(H),
separate_numbers(T, LN, LO).

separate_numbers([H | T], LN, [H | LO]) :-
not number(H),
separate_numbers(T, LN, LO).

exercise 7.5: using arguments to
collect/verify properties

Given facts
m(a, 2, v).
m(b, 5, nv).
d(c, 7, v).
d(e, 10, nv).

Write a predicate p/3 that is
true for p([M, D], N, V) where
• M sa6sfies m(M, N1, V1)
• D sa6sfies d(D, N2, V2)
• N is the sum of N1 and N2
• V unifies to v if V1 and V2

are equal to v, to nv
otherwise

Take your *me to search, code and test your
own program

Then take your *me to understand the
following solu*on

28

exercise 7.5: using arguments to
collect/verify proper>es (bis)

m(a, 2, v).
m(b, 5, nv).
d(c, 7, v).
d(e, 10, nv).

p([M, D], N, V) :-
m(M, Nm, V1),
m(D, Nd, V2),
N is Nm + Nd,
check_v(V1, V2, V).

check_v(v, v, v).
check_v(v, nv, nv).
check_v(nv, v, nv).
check_v(nv, nv, nv).

More logic programming languages

Prolog is a star9ng point to
Constraint Logic programming
Answer set programming
Concurrent (constraint) logic programming
…

check sites of
Associa0on for Logic programming
h\ps://logicprogramming.org
Associa/on for constraint programming:
h\ps://www.a4cp.org

https://logicprogramming.org/
https://www.a4cp.org/

You can go on learning by yourself
– Learn Prolog now !

• slightly larger than this lecture
• 12 chapters
• by Patrick Blackburn, Johan Bos, and KrisMna Striegnitz
• hPps://lpn.swi-prolog.org/lpnpage.php?pageid=online

– ECLiPSE ELearning Website of Helmut Simonis
• video lectures, slides, handouts and other material
• mainly Constraint Logic programming
• 20 (!) chapters
• An impressive lists of applica1ons
• by Helmut Simonis
• hPp://www.eclipseclp.org/ELearning/

https://lpn.swi-prolog.org/lpnpage.php?pageid=online
http://www.eclipseclp.org/ELearning/

