INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES
RENNES

INSA

Prolog features

S « real » programming

Mireille Ducassé

Last revision April 2024

T

Remember: arithmetics

In order to ask Prolog to treat numbers,
use is/2 (that is extra-logical)

?- X =2+3.
X=2+3

?- Xis 243
X=5

?-XisY+3
Error

Modes

* Not all predicates are fully declarative

* [tisimportant to know the mode of the
arguments when the goal is called

* ++: should be ground

e + :should not be a variable (but can contain variable)
e - :should be a variable

e ? :can be not instantiated at all

Crucial information in the library documentation
 Example

— factorial(++, ?)
e cannot be used with variables in the first argument

Exercise 5.1: Zebra puzzle 1/2

The "Zebra puzzle":

1 There are 5 colored houses in a row, each having an owner, which has an
animal, a favorite cigarette, a favorite drink.

2 The English lives in the red house.

3 The Spanish has a dog.

4 They drink coffee in the green house

5 The Ukrainian drinks tea.

6 The green house is next to the white house.

7 The Winston smoker has a serpent.

8 In the yellow house they smoke Kool.

9 In the middle house they drink milk.

10 The Norwegian lives in the first house from the left.

11 The Chesterfield smoker lives near the man with the fox.

12 In the house near the house with the horse they smoke Kool.

13 The Lucky Strike smoker drinks juice.
14 The Japanese smokes Kent.
15 The Norwegian lives near the blue house.

Who has a zebra and who drinks water?

Exercise 5.1: Zebra puzzle 2/2

* Write a Prolog program to solve The Zebra problem
— The main predicate has 17 subgoals.
* How to proceed

— Represent the houses as a list with 5 lists from left to

right in the street:
Sol = [[Man1, Animall, Cigarettel, Drink1, Color1],

[..LI-LLL
[Man5, Animal5, Cigarette5, Drink5, Color5] |

— Define predicate right(X, Y, L) that is true if X is just
after Y in list L.

— Define predicate near(X, Y, L) that is true if either X is
just after Y or Y is just after X is L.

— Use predicates member/2
— Test case : ?- zebra(Sol).

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

Exercise 5.1: Zebra puzzle 2/2 (bis)

zebra(Sol):- near(X,Y,L):-
length(Sol, 5), %1 right(X,Y,L)
member([english, , , ,red], Sol), % 2 near(XgY L)'i o
member([spanish,dog,_, ,], Sol), %3 i ’h’t(\.(X L))
member([_, , ,coffee,green], Sol), % 4 SRR
. . (o)
rpember([ukramlan,_,_,tea,_], Sf)l), %5 right(X, Y, [Y, X | _]).
rlght([_,_,_,_,green],[_,_,_,_,Whlte], SOI)I % 6 ri ht(x Y [| ZS]) t-
member([_,snake,winston, ,], Sol), % 7 . i ’ht’(X_Y Zs) |
member([_,_,kool, ,yellow], Sol), % 8 SIS LA
_ . (o)
sol=[_,_[,__milk,_]._,_], %9 left(X, Y, L) :-
Sol=[[norwegian, , , , 1, , , , 1], % 10

________ ight(Y, X, L).
near([_,_,chesterfield, ,],[,fox, , ,], Sol), %11 right()

near([_, ,kool, , 1,[,horse, , ,],Sol), %12

member([_, ,lucky,juice,], Sol), % 13
member([japonese, ,kent, ,], Sol), % 14
near([norwegian, , , , 1,[,_, , ,blue], Sol), % 15
member([_, , ,water,], Sol), % someone drinks water

member([_,zebra, , ,], Sol). % someone has a zebra

MORE IMPORTANT FEATURES

More important features

Input/output

— read/2, read/3

— printf/2, printf/3
Controlling backtracking
— 1/0 (cut)

Negation as failure

— not/1

Operators

Note that there are many more built-in predicates. See
documentation: http://eclipseclp.org/doc/bips/

http://eclipseclp.org/doc/bips/

Input: read(-Term)

Succeeds if the next term from the input stream is
successfully read and unified with Term.

?- read(X).
12654.

]

X=12654

?- read(X).
hello.
X = hello

?- read(X).
father_of(lali, ana).

X = father_of(lali, ana).

?- read(X).
father_of(lali.
Error

read/1 is a full parser !!

It reads what is typed in
the input stream

It builds a Prolog term of
any complexity

except if there are syntax
errors

Input: read(-Term, ++Stream)

* read/2 behaves like read/1 but it reads from a given stream
* very useful if you want to read from a file
* |n that case the programming pattern is
top(FileName) :-
open(FileName, read, s),
my_program(..., S),
close(s).
my_program(...., S) :-

read(s, A),
do_something(A, ...),

See http://eclipseclp.org/doc/bips/kernel/ioterm/read-2.html

Output: printf(+Format, ?ArgList)

* The arguments in the argument list Arglist are interpreted
according to the Format string and the result is printed to
the output stream

e A useful example

?- printf("\tHello %w !\n\tYes, %w !!", [you, 'l mean you']).
Hello you !
Yes, | mean you !!

output: printf(+Stream, +Format, ?ArgList)

e Same as printf/2 but can write on any file
* In that case the programming pattern is

top(FileName) :-
open(FileName, write, s),
my_program(..., S),
close(s).

my_program(...., S) :-

orintf(".." [..]),

* See the Eclipse documentation for the details of the format

http://eclipseclp.org/doc/bips/kernel/ioterm/printf-3.html

Back to ancestor

* Add a predicate ancestor/0, that

— asks the user for whom s.he wants to find
ancestors

— prints, for each solution, the ancestor

Do not forget that when you enter the person
name you must end up witha .’

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

15

Back to ancestor (bis)

* Add a predicate ancestor/0, that

— asks the user for whom s.he wants to find ancestors
and

— prints, for each solution, the ancestor

Note that this is what you
. are used to with procedural
Code programming languages
ancestor :- but it is much less general
printf("Initial child?", []), than ancestor/2...

read(C),

ancestor(A, C),
printf("%w is an ancestor of: %w\n”, [A, C]).

Why ?

Controlling backtracking: !/0

* Backtracking is very powerful but sometimes
we need to control it

— built-in predicate '!" (called ‘cut’) is used to tell the
interpreter not to backtrack

— it is always true and works by side effects on the
interpreter internal (hidden) structure

— it cuts branches in the search tree
* within a certain scope
— this is very useful but extra-logical

cut : example 1

aa :- Iflis executed
bbl, .
= other possibilities are abandoned
bb2,
,
bb3 — all possibilities are tried
aa :-]
CCI, > Not tried
cc2. _
bbl :- ddl. ddl.
bbl :- dd2. » Not tried dd2.
bb2 :- eel. eel.
bb3 - ffl. e ff1.
bb3 :- {12. 2.

© P. Sébillot translated and adapted by. M. Ducassé INSA 3¢ année Prolog, ¢5-20

cut: example 2 1/3

ppO(X(,X\;) -
Qg (A),
(Y). ppO(X.,Y) B B
qal(l). qq(X), qq(Y) succes 0 1
e X=1 X2
qq(Y) - qq(Y)
YZNZZ Y—l/\Y—Z
SUCCES Succes succes SUCCES
11 12 21 22

© P. Sébillot INSA 3¢ année Prolog, c5-21

ppl(X,Y) -

aq(Xx),
?qfﬂ,

ppl(0, 1).

aa(l).
qa(2).

cut: example2 2/3

ppl(X.Y)

X), qq(Y), !
qq(Y), !

A

!

/

SUCCES
11

© P. Sébillot

INSA 3¢ année Prolog, c5-22

PpP2(X,Y) -

?qOOI

qaly).
pPP2(0, 1).

aa(l).
qa(2).

cut: example2 3/3

pp2(X,Y)

~qq(X), 1, qq(Y)

L q|q(Y)
qq(Y)

§F=}//”\\\\E?=2

SUCCES
11

SUCCES
12

© P. Sébillot

INSA 3¢ année Prolog, c5-23

french_menu([A, M], Cal) :-
appetizer(A, ApCal),
main_course(M , MacCal),
Back to

check_cal([ApCal, MaCal], Cal).
french_menu([M, D], Cal) :-

frenCh_menU/z main_course(M , MaCal),

dessert_or_cheese(D, DeCal),
check_cal([MaCal, DeCal], Cal).

What are the answers to the following queries ?
?- french_menu(M, C), l.

?- french_menu([X, Y], C), main_course(X,), l.

?- french_menu([X, Y], C), !, main_course(X,).

Back to ex 3.5 deleteXs(X, L1, L2)

We designed
deleteXs(X, [, []).
deleteXs(X, [X | L1], L2) :-
deleteXs(X, L1, L2).
deleteXs(X, [Z | L1], [£ | L2]) :-
X\=/Z,
deleteXs(X, L1, L2).

How could we prune the search tree without
loosing any solution ?

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

26

Back to ex 3.5 deleteXs/3: update 1 (bis)

We designed
deleteXs(_X, [I, [D.
deleteXs(X, [X | L1], L2) :-
deleteXs(X, L1, L2). o : _
deleteXs(X, [Z | L] [Z | L2]) - %.... <end of line>:
X\=Z. comment
deleteXs(X, L1, L2).
How could we prune the search tree Note that the base clause

without loosing any solution ? does not need a cut
deleteXs(_X, [], [])- because Prolog compiler is
deleteXs(X, [X | L1], L2) :- clever enough to deduce
deleteXs(X, L1, L2), that it is exclusive

deleteXs(X, [Z | L1], [Z | L2]) :- The test is not necessary,
% X\=2, but keeping it would be
deleteXs(X, L1, L2). correct

Cut and declarative programming

e Cutis extra-logical
— testing all cases is especially crucial

— remember that you should always test
* verification of at least a correct solution (that should
get ‘yes’)
 verification of at least an incorrect solution (that should
get ‘'no’)
e generations of solutions (at least one test case per
argument with that argument variable)

Exercise 5.2: minimum of 2 integers

e min(M, X, Y) is true if M is the minimum of X and
Y

e Write 2 versions

— one without cut and one with cut that prunes the
search tree without changing the results

— specify the mode of the arguments when the goal is
called
* ++: should be ground
e + :should not be a variable (but can contain variable)
e - :should be a variable
e ? :can be notinstantiated at all

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

30

Ex. 5.2: minimum of 2 integers (bis)

* min(M, X, Y) is true if M is the minimum of X and

Y
e Write 2 versions

— one without cut and one with cut that prunes the
search tree without changing the results

.- mode mini(?, ++, ++).
mini(X, Y, X) :-

X<Y.
mini(X, Y, Y) :-

Y =<X.

Optimized version
mini(X, Y, X) :-
X<Y,
l,
mini(X, Y, Y) :-
Y =<X.

Ex. 5.2: minimum of 2 integers (ter)

This is incorrect

mini(X, Y, X) :- ,
?- min(2, 5, 5).
X<Y, yes
l,
mini(X, Y, Y). (It should be “No”, 2 is not

the minimum of 5 and 5!)

Assumption of a closed world

* Negation as failure
— if it cannot be proved = it is considered negated

 The standard procedure is to check if a goal
succeeds
* You can explicitly check if a goal fails

— using predicate not/1
— But you have to be careful

Predicate not/1

* Existing built-in meta-predicate

— namely a predicate that takes a predicate as

argument
fail/0 is another built-in
not(P) :- predicate
P It forces the execution to fail.
. . The second clause is only
fail. tried if P did not previous
not(P). succeed, hence telling that P

fails &

Exercise 5.3: small/1

short(X) :-
not(tall(X)).
tall(peter).
tall(paul).
 What are the answers to
?-short(mary).
?-short(peter).
?-short(X), X=mary.

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

36

Exercise 5.3: small/1 (bis)

When using not/1 you
short(X) :-
X) should be careful about
not(tall(X)). non ground arguments |

tall(peter).

tall(paul). ! not/1 is not fully logical
 What are the answers to

?-short(mary). ves (valid)
?-short(peter). no (valid)

?-short(X), X=mary. no (invalid)

Operators

Operators help to write more readable code

— useful when your code is to be read by non experts
you have to declare

— priority

— whether is an infix, prefix or suffix operator

— (sometimes tricky)

Examples

« Xparent_ofY is the same as parent_of(X, Y)
.- op(500, xfx , parent_of).
infix operator with priority 500

e Xis 342 is the same as is(X, 3+2)

Note that the project does not need operators

ECLIPSe Documentation

User manual
Tutorials

The Reference Manual(s)

— must always be open while programming

— predicate with the largest arity often the most general
one, with the most detailed help

* eg min_max/8
On line help

— same contents as reference manual
.- help <keyword>.

http://eclipseclp.org/doc/index.html

ECLiPSe Documentation

o ECLiPSe Tutorial Introduction, also in pdf format
o Developing Applications with ECLiPSe, also in pdf format

o User Manual, also in pdf format
o Constraint Library Manual, also in pdf format

o Reference Manual (Built-In Predicates and Libraries) with Alphabetical Predicate Index

o Embedding and Interfacing Manual, also in pdf format
o API documentation for the Java-Eclipse Interface

o Visualisation tools manual, also in pdf format

o Obsolete Libraries Manual, also in pdf format

o Constraint Programming Examples (ECLiPSe web site)
o Examples for Embedding (C, C++, VBasic, Java) and Search

o ECLiPSe web site
» How to report a bug
o Join the mailing list!

Third party components:

o Clp(Q,R) Library Manual (Postscript)

[All ECLiPSe Documentation | Alphabetic Index]

ECLiPSe 6.0 Reference Manual

1. The ECLiPSe Built-In Predicates
2. The ECLiPSe Libraries

3. Third Party Libraries

Built-Ins and Libraries by Categories

Built-In Predicates
allsols| arithmeticl compilerl controll debugl directives| dynamicl envl eventl externals| iocharl iostream|
ioterm| modules| obsoletel opsys| record| storagel stratoml suspensions| syntax| termcompl termmanipl

typetest|
Algorithms

all_min_cutsl all_min_cuts_eplex! anti_unifyl applyl apply_macros| bfsl branch_and_bound| calendar]
changeset| colgenl edge_finderl edge finder3| fd_global_gacl graph_algorithmsl ic_global_gacl max_flowl
max_flow_eplex| notinstancel numbervars| par_utill regex| suspend| tentative_constraints|
Compatibility
atts| ciol conjunto_fd_sets| cprolog| fcompilel foreignl isol mercuryl multifilel numbervars| obsoletel quintus|
sepial sicstus| sockets| swil
Constraints
bfs| cardinall changeset! chrl colgen! conjuntol conjunto_fd_sets| constraint_pools| cumulativel cyclel echl
edge_finderl edge_finder3l eplex| eplex_cplex! eplex_osil eplex_osi_clpebel eplex_osi_symelpl
: dl fd_globall fd_global gacl fd_sbds| fd_searchl fd_sets| flatzincl fzn_eplex! fzn_fdl fzn_icl
umulativel ic_edge finderl ic_edge_finder3l ic _gap sbddl ic_gap sbdsl ic_globall
g glic_hybrid_sets| ic_kernell ic_make_overlap g shigmir0be_search
ic_probe_supportl ic_probing_for_scheduling| ic_sbds| ic_§ sbl make_overlap_bivs|
minizinc| mipl probel probe_searchl probe_support! probin s imaballopial repairl sd|
shadow_consl suspend| sym_exprl tentativel tentative constramtsl

Data Structures
config_opts| constraint_pools| graph_algorithms| hashl heaps| linearizel list_collecti M tutl m_mapl
m_tree234| matrix_utill notify_ports| ordset| queues| record| shadow_cons| storage! iz pame
Development Tools
asml compiler| coveragel debugl document| envl fcompilel instprofilel instrument| lint| lips| mode_analyser|

port_profilerl pretty printl pretty printer| profilel remote_tools| source processorl spelll test utill time logl
toplevell ve_support] viewablel xrefl

flatten(+NestedList, ?FlatList)

Succeeds if FlatList is the list of all elements in NestedList, as found in a left-to-right, depth-first traversal of NestedList.

+NestedList

Ground List.
?FlatList

List or variable.

Description

FlatList is the list built from all the non-list elements of NestedList and the flattened sublists. The sequence of elements in FlatList is determined by a
left-to-right, depth-first traversal of NestedList.

The definition of this Prolog library predicate is:

flatten(List, Flat) :-

flatten_aux(List, Flat, []).
flatten_aux([), Res, Cont) :-~ -?-> !, Res = Cont.
flatten_aux([Head|Tail], Res, Cont) :-

2>

I
flatten_aux(Head, Res, Contl),

flatten_aux(Tail, Contl, Cont).
flatten_aux(Term, [Term|Cont), Cont).

This predicate does not perform any type testing functions.
Modes and Determinism
« flatten(+, -) is det
Fail Conditions
Fails if FlatList does not unify with the flattened version of NestedList.
Resatisfiable

No.

Examples

Success:
[eclipse): flatten([[1,2,(3,4),5),6,(7])), L).
L=1[1,2,3,45,6, 7]
yes.

Fail:
[eclipse): flatten([1,[3],2], [1,2,3]).
no.

See Also

flatten / 3, sort / 2, sort / 4, length / 2, member / 2

