
Ch 5 – More Prolog features

Towards « real » programming

Mireille Ducassé

Last revision April 2024

Computer Science
Department

Remember: arithmetics
In order to ask Prolog to treat numbers,
use is/2 (that is extra-logical)

?- X = 2+3.
X=2+3

?- X is 2+3
X=5

?- X is Y+3
Error

Modes
• Not all predicates are fully declara1ve
• It is important to know the mode of the

arguments when the goal is called
• ++: should be ground
• + : should not be a variable (but can contain variable)
• - : should be a variable
• ? : can be not instan8ated at all

• Example
– factorial(++, ?)

• cannot be used with variables in the first argument

Crucial informa8on in the library documenta8on

Exercise 5.1: Zebra puzzle 1/2
The "Zebra puzzle":

1 There are 5 colored houses in a row, each having an owner, which has an
animal, a favorite cigarette, a favorite drink.
2 The English lives in the red house.
3 The Spanish has a dog.
4 They drink coffee in the green house
5 The Ukrainian drinks tea.
6 The green house is next to the white house.
7 The Winston smoker has a serpent.
8 In the yellow house they smoke Kool.
9 In the middle house they drink milk.
10 The Norwegian lives in the first house from the left.
11 The Chesterfield smoker lives near the man with the fox.
12 In the house near the house with the horse they smoke Kool.
13 The Lucky Strike smoker drinks juice.
14 The Japanese smokes Kent.
15 The Norwegian lives near the blue house.

Who has a zebra and who drinks water?

• Write a Prolog program to solve The Zebra problem
– The main predicate has 17 subgoals.

• How to proceed
– Represent the houses as a list with 5 lists from le(to

right in the street:
Sol = [[Man1, Animal1, Cigare3e1, Drink1, Color1],

[..],[..],[..],
[Man5, Animal5, Cigare3e5, Drink5, Color5]]

– Define predicate right(X, Y, L) that is true if X is just
aEer Y in list L.

– Define predicate near(X, Y, L) that is true if either X is
just aEer Y or Y is just aEer X is L.

– Use predicates member/2
– Test case : ?- zebra(Sol).

Exercise 5.1: Zebra puzzle 2/2

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

6

Exercise 5.1: Zebra puzzle 2/2 (bis)
zebra(Sol):-

length(Sol, 5), % 1
member([english,_,_,_,red], Sol), % 2
member([spanish,dog,_,_,_], Sol), % 3
member([_,_,_,coffee,green], Sol), % 4
member([ukrainian,_,_,tea,_], Sol), % 5
right([_,_,_,_,green],[_,_,_,_,white], Sol), % 6
member([_,snake,winston,_,_], Sol), % 7
member([_,_,kool,_,yellow], Sol), % 8
Sol= [_,_,[_,_,_,milk,_],_,_], % 9
Sol= [[norwegian,_,_,_,_],_,_,_,_], % 10
near([_,_,chesterfield,_,_],[_,fox,_,_,_], Sol), % 11
near([_,_,kool,_,_],[_,horse,_,_,_], Sol), % 12
member([_,_,lucky,juice,_], Sol), % 13
member([japonese,_,kent,_,_], Sol), % 14
near([norwegian,_,_,_,_],[_,_,_,_,blue], Sol), % 15
member([_,_,_,water,_], Sol), % someone drinks water
member([_,zebra,_,_,_], Sol). % someone has a zebra

near(X,Y,L):-
right(X,Y,L).

near(X,Y,L):-
right(Y,X,L)).

right(X, Y, [Y, X | _]).
right(X, Y, [_ | Zs]) :-

right(X, Y, Zs).

leW(X, Y, L) :-
right(Y, X, L).

MORE IMPORTANT FEATURES

More important features
• Input/output

– read/2, read/3
– printf/2, printf/3

• Controlling backtracking
– !/0 (cut)

• Negation as failure
– not/1

• Operators

Note that there are many more built-in predicates. See
documenta8on: hCp://eclipseclp.org/doc/bips/

http://eclipseclp.org/doc/bips/

Input: read(-Term)
Succeeds if the next term from the input stream is
successfully read and unified with Term.
?- read(X).
12654.
X = 12654

?- read(X).
hello.
X = hello

?- read(X).
father_of(lali, ana).
X = father_of(lali, ana).

?- read(X).
father_of(lali.
Error

read/1 is a full parser !!

It reads what is typed in
the input stream

It builds a Prolog term of
any complexity

except if there are syntax
errors

‘.’ is mandatory

Input: read(-Term, ++Stream)
• read/2 behaves like read/1 but it reads from a given stream
• very useful if you want to read from a file
• In that case the programming pattern is
top(FileName) :-

open(FileName, read, s),
my_program(…, s),
close(s).

my_program(…., s) :-
…
read(s, A),
do_something(A, …),
… .

See http://eclipseclp.org/doc/bips/kernel/ioterm/read-2.html

Output: prin%(+Format, ?ArgList)

• The arguments in the argument list ArgList are interpreted
according to the Format string and the result is printed to
the output stream

• A useful example
?- prinI("\tHello %w !\n\tYes, %w !!", [you, 'I mean you']).

Hello you !
Yes, I mean you !!

output: prin9(+Stream, +Format, ?ArgList)
• Same as prinH/2 but can write on any file
• In that case the programming paJern is

top(FileName) :-
open(FileName, write, s),
my_program(…, s),
close(s).

my_program(…., s) :-
…
prin.("…", […]),
… .

• See the Eclipse documentaOon for the details of the format
hCp://eclipseclp.org/doc/bips/kernel/ioterm/prinM-3.html

Back to ancestor

• Add a predicate ancestor/0, that
– asks the user for whom s.he wants to find

ancestors
– prints, for each solution, the ancestor

Do not forget that when you enter the person
name you must end up with a '.'

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

15

Back to ancestor (bis)
• Add a predicate ancestor/0, that
– asks the user for whom s.he wants to find ancestors

and
– prints, for each soluSon, the ancestor

• Code
ancestor :-

prinH("IniJal child?", []),
read(C),
ancestor(A, C),
prinH("%w is an ancestor of: %w\n”, [A, C]).

Note that this is what you
are used to with procedural
programming languages
but it is much less general
than ancestor/2…

Why ?

Controlling backtracking: !/0

• Backtracking is very powerful but some1mes
we need to control it
– built-in predicate '!' (called ‘cut’) is used to tell the

interpreter not to backtrack
– it is always true and works by side effects on the

interpreter internal (hidden) structure
– it cuts branches in the search tree

• within a certain scope
– this is very useful but extra-logical

INSA 3e année Prolog, c5-20© P. Sébillot

cut : example 1
If ! is executed

other possibilities are abandoned

all possibilities are tried

Not tried

Not tried

Tried

translated and adapted by. M. Ducassé

INSA 3e année Prolog, c5-21© P. Sébillot

Cut: example 2 1/3
pp0(X, Y) :-

qq(X),
qq(Y).

pp0(0, 1).

qq(1).
qq(2).

INSA 3e année Prolog, c5-22© P. Sébillot

Cut: example2 2/3
pp1(X, Y) :-

qq(X),
qq(Y),
!.

pp1(0, 1).

qq(1).
qq(2).

INSA 3e année Prolog, c5-23© P. Sébillot

Cut: example2 3/3
pp2(X, Y) :-

qq(X),
!,
qq(Y).

pp2(0, 1).

qq(1).
qq(2).

Back to
french_menu/2

What are the answers to the following queries ?
?- french_menu(M, C), !.

?- french_menu([X, Y], C), main_course(X, _), !.

?- french_menu([X, Y], C) , !, main_course(X, _).

french_menu([A, M], Cal) :-
appe8zer(A , ApCal),
main_course(M , MaCal),
check_cal([ApCal, MaCal], Cal).

french_menu([M, D] , Cal) :-
main_course(M , MaCal),
dessert_or_cheese(D , DeCal) ,
check_cal([MaCal, DeCal], Cal).

…

Back to ex 3.5 deleteXs(X, L1, L2)

We designed
deleteXs(_X, [], []).
deleteXs(X, [X | L1], L2) :-

deleteXs(X, L1, L2).
deleteXs(X, [Z | L1], [Z | L2]) :-

X \= Z,
deleteXs(X, L1, L2).

How could we prune the search tree without
loosing any solution ?

Take your 8me to search, code and test your
own program

Then take your 8me to understand the
following solu8on

26

Back to ex 3.5 deleteXs/3: update 1 (bis)
We designed

deleteXs(_X, [], []).
deleteXs(X, [X | L1], L2) :-

deleteXs(X, L1, L2).
deleteXs(X, [Z | L1], [Z | L2]) :-

X \= Z,
deleteXs(X, L1, L2).

How could we prune the search tree
without loosing any solution ?

deleteXs(_X, [], []).
deleteXs(X, [X | L1], L2) :-

deleteXs(X, L1, L2),
!.

deleteXs(X, [Z | L1], [Z | L2]) :-
% X \= Z,

deleteXs(X, L1, L2).

%.... <end of line>:
comment

Note that the base clause
does not need a cut
because Prolog compiler is
clever enough to deduce
that it is exclusive

The test is not necessary,
but keeping it would be
correct

Cut and declaraLve programming

• Cut is extra-logical
– tesVng all cases is especially crucial
– remember that you should always test

• verifica8on of at least a correct solu8on (that should
get ‘yes’)

• verifica8on of at least an incorrect solu8on (that should
get ‘no’)

• genera8ons of solu8ons (at least one test case per
argument with that argument variable)

Exercise 5.2: minimum of 2 integers

• min(M, X, Y) is true if M is the minimum of X and
Y

• Write 2 versions
– one without cut and one with cut that prunes the

search tree without changing the results
– specify the mode of the arguments when the goal is

called
• ++: should be ground
• + : should not be a variable (but can contain variable)
• - : should be a variable
• ? : can be not instan8ated at all

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

30

Ex. 5.2: minimum of 2 integers (bis)

• min(M, X, Y) is true if M is the minimum of X and
Y

• Write 2 versions
– one without cut and one with cut that prunes the

search tree without changing the results
:- mode mini(?, ++, ++).
mini(X, Y, X) :-

X < Y.
mini(X, Y, Y) :-

Y =<X.

OpVmized version
mini(X, Y, X) :-

X < Y,
!.

mini(X, Y, Y) :-
Y =<X.

Ex. 5.2: minimum of 2 integers (ter)

This is incorrect
mini(X, Y, X) :-

X < Y,
!.

mini(X, Y, Y).

?- min(2, 5, 5).
yes

(It should be “No”, 2 is not
the minimum of 5 and 5!)

Assumption of a closed world

• Nega(on as failure
– if it cannot be proved = it is considered negated

• The standard procedure is to check if a goal
succeeds

• You can explicitly check if a goal fails
– using predicate not/1
– But you have to be careful

Predicate not/1
• Existing built-in meta-predicate

– namely a predicate that takes a predicate as
argument

not(P) :-
P,
!,
fail.

not(P).

fail/0 is another built-in
predicate
It forces the execuVon to fail.

The second clause is only
tried if P did not previous
succeed, hence telling that P
fails 🤪

Exercise 5.3: small/1

short(X) :-
not(tall(X)).

tall(peter).
tall(paul).
• What are the answers to
?-short(mary).
?-short(peter).
?-short(X), X=mary.

Take your 8me to search, code and test your
own program

Then take your 8me to understand the
following solu8on

36

Exercise 5.3: small/1 (bis)

short(X) :-
not(tall(X)).

tall(peter).
tall(paul).
• What are the answers to
?-short(mary). yes (valid)
?-short(peter). no (valid)
?-short(X), X=mary. no (invalid)

When using not/1 you
should be careful about
non ground arguments !

⚠ not/1 is not fully logical

Operators
Operators help to write more readable code

– useful when your code is to be read by non experts
you have to declare

– priority
– whether is an infix, prefix or suffix operator
– (someYmes tricky)

Examples
• X parent_of Y is the same as parent_of(X, Y)

:- op(500, xfx , parent_of).
infix operator with priority 500

• X is 3+2 is the same as is(X, 3+2)

Note that the project does not need operators

ECLiPSe DocumentaLon

• User manual
• Tutorials
• The Reference Manual(s)
– must always be open while programming
– predicate with the largest arity often the most general

one, with the most detailed help
• eg min_max/8

• On line help
– same contents as reference manual
:- help <keyword>.

hdp://eclipseclp.org/doc/index.html

