
Ch 3 - Lists

Mireille Ducassé

Last revision April 2024

Computer Science
Department

Remember: recusion is key!
lali parent_of ana.
lali parent_of soso.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

gialali

ana soso

mariamrezo

parent_of(lali, rezo) parent_of(lali, X1),
ancestor_of(X1, rezo)

ancestor_of (lali, rezo)

No ancestor_of(soso, rezo)

YesNo

parent_of(soso, rezo)
parent_of(soso, X2),
ancestor_of(X2, rezo)

No

parent_of(ana, rezo)

Where can you
see recursion

here ?

3

Lists

Lists are the most important structured terms of Prolog

• A list is a finite sequence of elements in between
brackets
– the order is important, as opposed to sets

• The length is flexible
– as opposed to functor that have a fixed arity

• The elements are not necessarily of the same type
– as opposed to functional programming

• The empty list ([]) is an important special list

4

Examples

• [lali, soso, ana, gia, mariam]
• [lali, father_of(soso), ana, X, 2, maia]
• []
• [lali, [soso, [ana], gia], mother_of(mariam), [2,

[b,c]], [], Z, [2, [b,c]]]
• [a, b, c | LL]

5

Head and Tail
• A non-empty list can be decomposed in two parts

– Head
• first item of the list

– Tail
• remaining of the list
• always a list

Example: [lali, soso, ana, gia, mariam]
Head: lali
Tail: [soso, ana, gia, mariam]

• Built-in operator ‘|’
?- [lali, soso, ana, gia, mariam] = [Head | Tail].
Head = lali
Tail = [soso, ana, gia, mariam]

6

Exercise 3.1
1. ?-[father_of(soso), ana, X, 2, maia] = [Head | Tail].

2. ?-[] = [Head | Tail].

3. ?-[[[ana], gia], mother_of(mariam), [2, [b,c]], [], Z, [2, [b,c]]]
= [Foo | Bar].

4. ?-[[], ana, X, 2, maia] = [H | T].

5. ?-[a, b, c | LL] = [X, Y | Tail].

6. ?-[mother_of(mariam)] = [Head | Tail].
7

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

8

Exercise 3.1
(bis)

?-[father_of(soso), ana, X, 2, maia] = [Head | Tail].
Head = father_of(soso)
Tail = [ana, X, 2, maia]

?-[] = [Head | Tail].
No

?-[[[ana], gia], mother_of(mariam), [2, [b,c]], [], Z, [2, [b,c]]] = [Foo | Bar].
Foo = [[ana], gia]]
Bar = [mother_of(mariam), [2, [b,c]], [], Z, [2, [b,c]]]

?-[[], ana, X, 2, maia] = [H | T].
H = []
T = [ana, X, 2, maia]

?-[a, b, c | LL] = [X, Y | Tail].
X = a
Y = b
Tail = [c | LL])

?-[mother_of(mariam)] = [Head | Tail].
Head = mother_of(mariam)
Tail =[]

9

Hindsight

• What can you say about the name of the
variables ?

• Note item 5: [a, b, c | LL] = [X, Y | Tail].

10

Remarks: empty list []

• is a special list without any internal structure

• has neither a head nor a tail

• plays an important role in recursive predicates
for list processing in Prolog

11

Anonymous variable
Suppose we are interested in the second and fourth element of a list

?- [X1, X2, X3, X4 | Tail] = [mia, vincent, marsellus, jody, yolanda].
X1 = mia
X2 = vincent
X3 = marsellus
X4 = jody
Tail = [yolanda]
yes

A simpler way to obtain only the information we want:
?- [_, X2, _, X4 | _] = [mia, vincent, marsellus, jody, yolanda].
X2 = vincent
X4 = jody
yes

The underscore is the anonymous variable
• Used when you need to use a variable, but you are not interested in what

Prolog instantiates it to
• Each occurrence of the anonymous variable is independent,

– i.e. can be bound to something different

Learn Prolog Now – Chapter 412

Back to French menu: Update 3

• Predicates with same name and different arities are a strong
source of bugs
– in particular when the program is updated to add new functionalities.

• Update your program so that the french_menu predicate has
arity 1 for all possible structures and that the users only give the
order of the courses
– Change as little as possible

Valid menus (Test cases -> Yes)
?- french_menu([salad, trout_with_rice]).
?- french_menu([trout_with_rice, roquefort]).
?- french_menu([salad, trout_with_rice, roquefort]).
?- french_menu([salad, trout_with_rice, roquefort, cake]).

Invalid menus (Test cases -> No)
?- french_menu([trout_with_rice, salad]).
?- french_menu([salad, trout_with_rice, cake, cake]).
?- french_menu([salad, trout_with_rice, roquefort, cake, coffee]). 13

Start from the last
solution given in
previous chapter:
with rules to define
main_course/1 and
with predicate
dessert_or_cheese/1

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

14

French menu:
Update 3 (bis)

Facts
appetizer(salad).
appetizer(poached_egg).
appetizer(artichoke).

meat_course(steak_with_vegetables).
meat_course(chicken_with_fries).

fish_course(trout_with_rice).
fish_course(salmon_with_eggplant).

veggy_course(falafel_with_rice).
veggy_course(vegetable_lasagna).

dessert(fruit_salad).
dessert(fresh_fruit).
dessert(cake).

cheese(roquefort).
cheese(camembert).

Rules
french_menu([A, M]) :-

appetizer(A),
main_course(M).

french_menu([M, D]) :-
main_course(M),
dessert_or_cheese(D).

french_menu([A, M, D]) :-
appetizer(A),
main_course(M),
dessert_or_cheese(D).

french_menu([A, M, C, D]) :-
appetizer(A),
main_course(M),
cheese(C),
dessert(D).

main_course(M) :-
meat_course(M).

main_course(M) :-
fish_course(M).

main_course(M) :-
veggy_course(M).

dessert _or_cheese(D) :-
cheese(D).

dessert _or_cheese(D) :-
dessert(D).

One predicate
only for
french_menu/1

You have to
change the way
you call
french_menu !

15

French menu: Update 4

• In the previous version there is a lot of
code duplication, also a strong source
of bugs
• Update your program for a strictly

equivalent version with less duplication
–Define and use predicates

• menu_main/1 that checks a list starting with a
main_course

• menu_dessert/1 that checks a list starting with a
dessert or cheese

Same test cases as before. 16

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

17

French menu:
Update 4 (bis)

% Same facts as for the previous
version

main_course(M) :-
meat_course(M).

main_course(M) :-
fish_course(M).

main_course(M) :-
veggy_course(M).

dessert _or_cheese(D) :-
cheese(D).

dessert _or_cheese(D) :-
dessert(D).

%french_menu/1
french_menu([A | Tail]) :-

appetizer(A),
menu_main(Tail).

french_menu(M) :-
menu_main(M).

% french_menu_main/1
menu_main([M | Tail])

main_course(M),
menu_dessert(Tail).

% menu_dessert/1 (and/or cheese)

menu_dessert([]).
menu_dessert([A]) :-

dessert_or_cheese(A).
menu_dessert([C, D]) :-

cheese(C),
dessert(D).

18

Remark

• Most of the predicates that we will define in this
chapter already exist in the Eclipse Prolog library
of predefined predicates
– http://eclipseclp.org/doc/bips/index.html

• When defining your own version, in order to be
able to test it, actually prefix the name of the
predicates with ‘my_’
– eg. my_member
– otherwise compilation error message : “trying to

redefine predicate…”

19

http://eclipseclp.org/doc/bips/index.html

Predicate member/2
when given a term X and a list L, tells whether or not X belongs to L

member(X, [X | T]).
member(X, [H | T]):-

member(X, T).

?- member(trudy, [yolanda,trudy,vincent]).
yes
?- member(zed,[yolanda,trudy,vincent]).
no
?- member(X, [yolanda,trudy,vincent]).
X = yolanda;
X = trudy;
X = vincent;
no

Learn Prolog Now – Chapter 4

Base clause

Recursive clause

It is true that an element X is a
member of a list L
if X is the first element of L
or if X is a member of the tail of L.

20

Exercise 3.2

Write a version of member/2 with anonymous variables when
relevant

21

Exercise 3.2 (bis)
Write a version of member/2 with anonymous variables when relevant

member(X, [X | _]).
member(X, [_ | T]):-

member(X, T).

Equivalent to
member(X, L) :-

L = [X | _].
member(X, L):-

L = [_ | T],
member(X, T).

It is true that an element X is a
member of a list L
if X is the first element of L
or
if X is a member of the tail of L.

22

Exercise 3.3: a2b
Write the Prolog predicate
a2b/2 that takes two lists
as arguments
and succeeds
• if the first argument is a

list of a's, and
• if the second argument

is a list of b's of exactly
the same length

?- a2b([a,a,a,a],[b,b,b,b]).
yes
?- a2b([a,a,a,a],[b,b,b]).
no
?- a2b([a,c,a,a],[b,b,b,t]).
no
?- a2b([a,a,a,a,a], X).
X = [b,b,b,b,b]
yes
?- a2b(X,[b,b,b,b,b,b,b]).
X = [a,a,a,a,a,a,a]
yes
?- a2b([], []).
No

23

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

24

Exercise 3.3 : a2b (bis)
Write the Prolog predicate a2b/2 that takes two lists as arguments and succeeds
• if the first argument is a list of a's, and
• the second argument is a list of b's of exactly the same length
?- a2b([a,a,a,a],[b,b,b,b]).
yes
?- a2b([a,a,a,a],[b,b,b]).
no
?- a2b([a,c,a,a],[b,b,b,t]).
no
?- a2b([a,a,a,a,a], X).
X = [b,b,b,b,b]
yes
?- a2b(X,[b,b,b,b,b,b,b]).
X = [a,a,a,a,a,a,a]
yes

a2b([a], [b]).
a2b([a | L1],[b | L2]):-

a2b(L1, L2).

25

Trace 1

?- a2b([a, a, a, a], [b, b, b, b]).
(1) 1 CALL a2b([a, a, a, a], [b, b, b, b])
(1) 1 NEXT a2b([a, a, a, a], [b, b, b, b])
(2) 2 CALL a2b([a, a, a], [b, b, b])
(2) 2 NEXT a2b([a, a, a], [b, b, b])
(3) 3 CALL a2b([a, a], [b, b])
(3) 3 NEXT a2b([a, a], [b, b])
(4) 4 CALL a2b([a], [b])
(4) 4 *EXIT a2b([a], [b])
(3) 3 *EXIT a2b([a, a], [b, b])
(2) 2 *EXIT a2b([a, a, a], [b, b, b])
(1) 1 *EXIT a2b([a, a, a, a], [b, b, b, b])

a2b([a], [b]).
a2b([a | L1],[b | L2]):-

a2b(L1, L2).

26

Trace 2

?- a2b([a, a, a, a], B).
(1) 1 CALL a2b([a, a, a, a], B)
(1) 1 NEXT a2b([a, a, a, a], B)
(2) 2 CALL a2b([a, a, a], _283)
(2) 2 NEXT a2b([a, a, a], _283)
(3) 3 CALL a2b([a, a], _370)
(3) 3 NEXT a2b([a, a], _370)
(4) 4 CALL a2b([a], _457)
(4) 4 *EXIT a2b([a], [b])
(3) 3 *EXIT a2b([a, a], [b, b])
(2) 2 *EXIT a2b([a, a, a], [b, b, b])
(1) 1 *EXIT a2b([a, a, a, a], [b, b, b, b])

B = [b, b, b, b]

a2b([a], [b]).
a2b([a | L1],[b | L2]):-

a2b(L1, L2).

27

Exercise 3.4: double/2
Write a program for double(List1, List2) where every element of
the first list appears twice in a row in the second list

?- double([1,2], [1,1, 2,2]).
yes

?- double([a, b, c], [a, a, b, b, c, c]).
yes

?- double([], []).
No

28

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

29

Exercise 3.4: double/2 (bis)
Write a program for double(List1, List2) where every element of the first list
appears twice in a row in the second list

?- double([1,2], [1,1, 2,2]).
yes

?- double([a, b, c], [a, a, b, b, c, c]).
yes

?- double([], []).
No

double([X], [X,X]).
double([X | T1], [X,X | T2]) :-

double(T1, T2).
30

Exercise 3.5: deleteXs/3
Write a program for deleteXs(X, List1, List2) where List2 is
List1 with all the Xs deleted.

?- deleteXs(3, [1, 2, 3, 4, 3, 5], [1, 2, 4, 5]).
yes

?- deleteXs(3, [1, 2, 3, 4, 3, 5], L).
L = [1, 2, 4, 5]

What happens if you try the following ? Why ?
?- deleteXs(3, L, [1, 2, 4, 5]).

31

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

32

Exercise 3.5: deleteXs/3 (bis)
Write a program for deleteXs(X, List1, List2) where List2 is List1 with all the
Xs deleted.
?- deleteXs(3, [1,2,3,4,3,5], [1,2,4,5]).
yes
Try all modes in queries.

deleteXs(_X, [], []).
deleteXs(X, [X | L1], L2) :-

deleteXs(X, L1, L2).
deleteXs(X, [Z | L1], [Z | L2]) :-

X \= Z,
deleteXs(X, L1, L2).

33

Exercise 3.6: substitute/4
Write a Prolog program for substitute(X, Y, L1, L2) where L2 is the
result of substituting Y to all occurrences of X in L1

?- substitute(a, x, [a,b,a,c], [x,b,x,c]).
yes

?- substitute(a, x, [a,b,a,c], [x,b,a,c]).
no

?- substitute(a, x, [a,b,a,c], L).
L = [x, b, x, c]

?- substitute(a, x, L, [x,b,x,c]).
L = [a, b, a, c]

34

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

35

Exercise 3.6: substitute/4 (bis)
Write a Prolog program for substitute(X, Y, L1, L2) where L2 is the result of substituting Y to all
occurrences of X in L1

?- substitute(a, x, [a,b,a,c], [x,b,x,c]).
yes
?- substitute(a, x, [a,b,a,c], [x,b,a,c]).
no
?- substitute(a, x, [a,b,a,c], L).
L = [x, b, x, c]
?- substitute(a, x, L, [x,b,x,c]).
L = [a, b, a, c]

substitute(_X, _Y, [], []).
substitute(X, Y, [X | T1], [Y | T2]) :-

substitute(X, Y, T1, T2).
substitute(X, Y, [Z | T1], [Z | T2]) :-

X \= Z,
substitute(X, Y, T1, T2).

36

Exercise 3.7: append/3
• Write a Prolog predicate that concatenates lists: append(L1, L2, L3) is true

if list L3 is the result of concatenating the lists L1 and L2 together
• Test cases

?- append([a, b, c, d],[3, 4, 5], [a, b, c, d, 3, 4, 5]).
yes
?- append([a, b, c, d], [3, 4, 5], [a, b, c, 3, 4, 5]).
no
?- append(X, Y, [a, b, c, d]). %splitting up lists !
X=[]
X=[a]
X=[a,b]
X=[a,b,c]
X=[a,b,c,d]
no

37

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

38

Exercise 3.7: append/3 (bis)
• Write a Prolog predicate that concatenates lists: append(L1, L2, L3) is true if list L3 is the

result of concatenating the lists L1 and L2 together
• Test cases

?- append([a, b, c, d], [3, 4, 5], [a, b, c, d, 3, 4, 5]).
yes
?- append([a, b, c, d], [3, 4, 5], [a, b, c, 3, 4, 5]).
no
?- append(X, Y, [a, b, c, d]). %splitting up lists !
X=[]
X=[a]
X=[a,b]
X=[a,b,c]
X=[a,b,c,d] no

• Code
append([], L, L).
append([H | L1], L2, [H | L3]):-

append(L1, L2, L3).

39

Exercise 3.8: prefix/2
Using append/3, write a Prolog predicate that computes a prefix
of a list: prefix/2. A list P is a prefix of some list L when there is
some list such that L is the result of concatenating P with that
list.
• Test case
?- prefix(X, [a, b, c, d]).
X=[];
X=[a];
X=[a,b];
X=[a,b,c];
X=[a,b,c,d];
no

40

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

41

Exercise 3.8: prefix/2 (bis)
Using append/3, write a Prolog predicate that computes a prefix of a list:
prefix/2. A list P is a prefix of some list L when there is some list such that L is
the result of concatenating P with that list.
• Test case
?- prefix(X, [a, b, c, d]).
X=[];
X=[a];
X=[a, b];
X=[a, b, c];
X=[a, b, c, d];
no
• Code
prefix(P, L):-

append(P, _, L).

42

Exercise 3.9: suffix/2

Same exercise for suffix/2
• Test case
?- suffix(X, [a, b, c, d]).
X=[a, b, c, d];
X=[b, c, d];
X=[c, d];
X=[d];
X=[];
no

43

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

44

Exercise 3.9: suffix/2 (bis)
Same exercise for suffix/2
• Test case
?- suffix(X, [a, b, c, d]).
X=[a, b, c, d];
X=[b, c, d];
X=[c, d];
X=[d];
X=[];
no
• Code
suffix(S, L):-

append(_, S, L).

45

Exercise 3.10: sublist/2

Write a predicate that finds sub-lists of lists
The sub-lists of a list L are simply the prefixes of suffixes
of L
• Specify test cases

46

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

47

Exercise 3.10: sublist/2 (bis)

Write a predicate that finds sub-lists of lists
The sub-lists of a list L are prefixes of suffixes of L
• Specify test cases
• Code
sublist(Sub, List):-

suffix(Suffix, List),
prefix(Sub, Suffix).

48

49

Exercise 3.11: Georgian routing

Exercise 3.11: Georgian routing

road(tbilisi, rustavi).
road(tbilisi, mtskheta).
road(tbilisi, gurjaani).
road(tbilisi, akhmeta).
road(mtskheta, gori).
road(gurjaani, telavi).
road(akhmeta, telavi).
road(gori, khashuri).

• Write predicate route/2
to be able to discover,
from where to where we
can travel by road in the
direction given by those
facts (Tbilisi centered).
– Where can we drive from

tbilisi ?
– From where can we go to

telavi ?

Note that a version that takes into account
that roads go in both directions will be addressed later 50

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

51

Exercise 3.11: Georgian routing (bis)

road(tbilisi, rustavi).
road(tbilisi, mtskheta).
road(tbilisi, gurjaani).
road(tbilisi, akhmeta).
road(mtskheta, gori).
road(gurjaani, telavi).
road(akhmeta, telavi).
road(gori, khashuri).

route(X, Y) :-
road(X, Y).

route(X, Y) :-
road(X, Z),
route(Z, Y).

52

Hindsight

• Is this version of route/2 program very
different from the parent/ancestor program ?
– every program that traverses a directed graph will

look the same

53

Ex 3.11 Georgian routing: update 1

route(tbilisi, rustavi).
route(tbilisi, mtskheta).
route(tbilisi, gurjaani).
route(tbilisi, akhmeta).
route(mtskheta, gori).
route(gurjaani, telavi).
route(akhmeta, telavi).
route(gori, khashuri).

• Write a more
sophisticated version
that stores the
intermediate cities in a
list

54

Take your time to search, code and test your
own program

Then take your time to understand the
following solution

55

Ex 3.11 Georgian routing: update 1 (bis)

route(tbilisi, rustavi).
route(tbilisi, mtskheta).
route(tbilisi, gurjaani).
route(tbilisi, akhmeta).
route(mtskheta, gori).
route(gurjaani, telavi).
route(akhmeta, telavi).
route(gori, khashuri).

route(X, Y, []) :-
road(X, Y).

route(X, Y, [Z | Int]) :-
road(X, Z),
route(Z, Y, Int).

56

Hindsight
• The most important design pattern for list

processing:

do_list([], <base result>).
do_list([Head | Tail], [Head_Res |Tail_Res]) :-

do_one(Head , Head_Res),
do_list(Tail, Tail_Res).

• End result is concatenated at the end of the recursions

Recursion
– Replaces iteration of imperative programming
– Much safer to program with

• … once well understood J

sometimes
do_list([X], [<base_result>]).

57

