
An Introduction to Logic
Programming

Mireille Ducassé

Last revision March 2024

Computer Science
Department

Is this a program ?

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

Draw the graph

2

Is this a program ?

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

gialali

ana soso

mariamrezo

3

It is indeed a Prolog program !
lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

?- lali parent_of ana.
Yes

?- lali parent_of dato.
No

?- lali parent_of X.
X = soso;
X = ana

?- Y parent_of ana.
Y = lali;
Y = gia

gialali

ana soso

mariamrezo

Is lali a parent
of ana ?

Of whom is lali
a parent ?

4

Enlarging the program

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

gialali

ana soso

mariamrezo

?- ancestor_of (lali, ana).
Yes
?- ancestor_of (lali, mariam).
Yes
?- ancestor_of (soso, mariam).
No
?- ancestor_of(lali, X).
X = soso ;
X = ana ;
X = mariam ;
X = rezo

A person A is an ancestor of
another person C if either

A is a parent of C or
A is a parent of a third person

X who is an ancestor of C

5

Back to the program

• 8 clauses
– 6 facts, 2 rules
– Terminated by a « . »

• 2 predicates
– parent_of
– ancestor_of

• 6 atoms
– lali, ana, soso, gia,

mariam, rezo
– They are constants

• 5 Variables
– A (twice), C (twice), X
– Begin with

uppercase
– Local to a clause

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

6 Facts

2 Rules

6

Back to the program

Implica9on (⇐)
Head is true if body

if true

Conjunction (and)
Head

Body

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

7

Exercise ancestor 1/5

• Write the “ancestor_of” Prolog code corresponding
to your own family,
– going back to great grand parents
– Include at least sisters, brothers, cousins, aunts and

uncles
– Start from the “ancestor.pl” file in the Moodle page

• Run the program
– on EclipseClp
– or SWI Prolog

• Command : swipl
• Or Online version : https://swish.swi-
prolog.org

8

Exercise ancestor 2/5
• Test it

?- ancestor_of(<your grandma’s name here>, <your
name here>).

?- ancestor_of(A, <your name here>).
?- ancestor_of(<your name here>, C).
?- ancestor_of(A, C).

• Remember to keep the results of the test in the same
file
– in between comments
/*
< your tests here>
*/

9

Prolog terms
• Constants

– Atoms
– Numbers

• Strings
• Variables
• Lists

– See next chapters
• Functors + arguments

– Ex: parent_of(lali, X),
– Ex: whatever(Name, another(Y), 3)
– Number of arguments : arity

• parent_of/2
• whatever/3

• Queries and answers
– Ex: ?- parent_of(lali, ana). YES

10

Exercise ancestor 3/5

• For your personal “ancestor_of” Prolog code
corresponding to your own family, list
– Constants
– Strings
– Variables
– Lists
– Functors with their arity
– Some possible queries

11

Exercise ancestor 4/5
• Now program rules to define

– sibling/2
• a sibling of X is a child of X’s parents but not X

– aunt_or_uncle/2
• an aunt or uncle of X is a sibling of a parent of X

– cousin/2
• first write the corresponding English sentence
• “a cousin of X is …

– grandparent/2
• A grand parent of X is…

– greatgrandparent/2
• Test each predicate as soon as you have written it

– to check relations that are correct
– to check relations that are NOT correct
– to find relations

• Keep the code and the tests in a file
– to be uploaded before next lecture on the Moodle page

12

Your programs
• Upload them on Moodle after each lecture

– on the dedicated slots

• Make sure to add how you tested them
/*
<program description>
*/

<Prolog code>

/*
?- <tested goals and results>
*/

13

Exercise 2.1
• Write two Prolog predicates that define connected nodes in the

given graph:
– edge(Node1, Node2): it is true that there is a direct link between Node1 and

Node2
– connected(Node1, Node2) : there exists a path between Node1 and Node2
– A node is considered connected to itself

• Test each predicate
– to check connec5ons that are correct
– to check connec5ons that are NOT correct
– to find connec5ons

14

Exercise 2.1 (bis)

edge(a, b).
edge(a, c).
edge(b, d).
edge(c, d).
edge(d, e).
edge(f, g).

connected(Node, Node).
connected(Node1, Node2) :-

edge(Node1, Link),
connected(Link, Node2).

Note that this is almost the same program
as ancestor/2 with parent/2

15

Do you recognize this rule ?

toto(A, B) :-
tutu(X, A),
tutu(X, B),
A \= B.

• Names of predicates
and variables are crucial
for us, human being, to
be able to read and
understand a program

• Prolog interpreter does
not care as long as the
naming is consistent

16

Do you recognize this rule ? (bis)

toto(A, B) :-
tutu(X, A),
tutu(X, B),
A \= B.

• Names of predicates
and variables are crucial
for us, human being, to
be able to read and
understand a program

• Prolog interpreter does
not care as long as the
naming is consistent

If tutu is “parent_of”, this
is the rule for sibbling/2

17

DECLARATIVE PROGRAMMING

18

Declarative programming

• We defined what is a parent and
an ancestor

• We used the program with
different « modes »
– All parameters instantiated

• Verification
– Some parameters or none

instantiated
• Result generation
• No predefined input or output

ØVery powerful programming

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

19

Basic mechanisms

The « magic » comes from

– Unification
• ex: p(23, Y) = p(X, hello) with X/23 and Y/’hello’

and

– Search tree and Backtracking
• search for (more/all) solutions upon failure

⚠ In Prolog, “=“ denotes unificaTon NOT equality

20

Unification (=)

1. If T1 and T2 are constants, then T1 and T2 unify if
they are the same atom, or the same number

2. If T1 is a variable and T2 is any type of term, then
T1 and T2 unify, and T1 is instantiated to T2 (and
vice versa)

3. If T1 and T2 are complex terms then they unify if:
1. They have the same functor and arity, and
2. all their corresponding arguments unify, and
3. the variable instantiations are compatible.

21

Unification examples
?- lali = lali.
Yes
?- lali = ana.
No
?- lali = X. % Can ‘lali’ be unified with a free variable ?
X = lali
?- parent_of(lali, X) = ancestor_of(lali, ana).
No
?- parent_of(lali, X) = parent_of(lali, ana).
X = ana
?- parent_of(lali, X) = parent_of(Y, ana).
X = ana
Y = lali

22

More examples
?- X = lali, X = ana.
No
?- [X | Y] = [a, b, c]
X = a
Y = [b, c]
?- [a | Y] = [X , b, c].
X = a
Y = [b, c]
?- [a | Y] = [X , b | Z].
X = a
Y = [b | Z]

23

X.24

The unificaLon algorithm of Robinson

• Input
– 2 terms T1 and T2 to be unified

• Output
– q the most general unifier of T1 and T2
– or failure

• Initialisation
– q : = Æ , empty substitution
– stack : = [T1 = T2]
– failure : = false Unifica0on !

X.25

Unification algorithm 2/2
• while the stack is not empty and not failure, pop X = Y,

case of
– X is a variable not occurring in Y:

substitute X by Y in the stack and in q ;
add X / Y in q

– Y is a variable not occurring in X:
substitute Y by X in the stack and in q ;
add Y / X in q

– X and Y are constants or identical variables: go on
– X=f(X1, .., Xn) and Y=f(Y1, .., Yn) for a functor f and n > 0 :

push Xi=Yi, i=1..n
– else failure := true

• end-while
• if failure then return failure else return q

X.26

Exercise 2.2

• Use the previous algorithm to (try to) unify
– Lali and soso
– parent_of(lali, X) and Foo
– 3 and 2+1

• Hint : 2+1 is syntatic sugar for +(2, 1)

– parent_of(lali, X) and parent_of(Y, ana, Z)
– parent_of(lali, X) and parent_of(Y, ana)
– f(A,A) and f([3, 2],C)
– father(X) and X

Avoiding infinite terms : Occurs check

Without occurs check :
?- father(X) = X.
X=father(father(father(father(father(father
(father(father(father(father(father(father
(father(father(father(father(father(father
(father(father(father(father(father(father
(father(father(father(father(father(father
(father(father(father(father(father(father
(father(father(father(father(father(father
(father(father(father(father(father(father
(.............

ISO standard Prolog : the two terms do not unify
Some Prolog systems handle infinite terms 27

28

Exercise 2.3

• First “guess” the result then use the algorithm
to try to unify
– 6 and 2*3
– edge(a, X) and edge(Y, b, Z)
– edge(a, X) and edge(Y, b)
– connected(a, X) and connected(Y, e)
– foo(A,A) and foo(bar(B),C)
– p(X) and X

Exercise ancestor 5/5
• So far we have identified people by their first

name
– It is not a unique identifier
– In a real genealogy program we need more

information about them
• Update your program and represent each person

by a functor p(FirstName, YearOfBirth)
– You must modify parent_of/2
– Do you need to modify ancestor_of/2 ?

• Why or why not ?
– Give examples of query.

• Is this sufficient to identify uniquely a person ?
• Do not forget to test your solution

29

Exercise ancestor 5/5 (bis)
parent_of(p(lali, 1950), p(soso, 1973)).
parent_of(p(lali, 1950), p(ana, 1975)).
parent_of(p(gia, 1950), p(ana, 1975)).
parent_of(p(gia, 1950), p(soso, 1973)).
parent_of(p(ana, 1975), p(mariam, 2000)).
parent_of(p(ana, 1975), p(rezo, 2002)).

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

/* examples of query
?- ancestor(A, X).
?- ancestor(p(lali, 1950), X).
?- ancestor(p(lali, 1950), p(Y, 1973)).
*/ 30

Unification can deal with
functors

For a reel program you would need more
information and a unique identifier

For example

p(p1, lali, 1950, georgia).
p(p2, gia, 1950, georgia).
p(p3, soso, 1973, georgia).
p(p4, ana, 1975, france).
p(p5, mariam, 2000, france).
p(p6, rezo, 2002, france).

parent_of(p1, p3).
parent_of(p1, p4).
parent_of(p2, p3).
parent_of(p2, p4).
parent_of(p4, p5).
parent_of(p4, p6).

Or better

p(p1Lali1950, lali, 1950, georgia).
p(p2Gia1950, gia, 1950, georgia).
p(p3Soso1973, soso, 1973, georgia).
p(p4Ana1975, ana, 1975, france).
p(p5Mariam2000, mariam, 2000, france).
p(p6Rezo2002, rezo, 2002, france).

parent_of(p1Lali1950, p3Soso1973).
parent_of(p1Lali1950, p4Ana1975).
parent_of(p2Gia1950, p3Soso1973).
parent_of(p2Gia1950, p4Ana1975).
parent_of(p4Ana1975, p5Mariam2000).
parent_of(p4Ana1975, p6Rezo2002).

31

Unique identifiers that also convey
readable information thanks to atoms

IdenFfiers here are already beIer
than simple numbers

Prolog search tree
Definition: A search tree of a goal G with respect to a program P :

– The root is G
– Nodes are goals (resolvent), with one selected goal
– There is an edge from a node N for each clause in the program

whose head unifies with the selected goal of N
• edges are labeled by the current substitution

Remarks
– Each branch from the root is a computation of P by G
– Leaves are

• success nodes, where the empty goal has been reached, or
• failure nodes, where the selected goal cannot be further

reduced
– Success nodes correspond to solutions of the root 32

new
variable at
each call

Search tree
?- ancestor_of (lali, rezo).
Yes

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

No

parent_of(ana, rezo)

resolvent
(goals that still

need to be
proved/executed)failing

branch

ancestor_of(ana, rezo)

parent_of(lali, rezo) parent_of(lali, X1),
ancestor_of(X1, rezo)

ancestor_of (lali, rezo)

No ancestor_of(soso, rezo)

YesNo

parent_of(soso, rezo) parent_of(soso, X2),
ancestor_of(X2, rezo)

success
branch

33

Exercise 2.4

• What happens if we exchange the first 2 lines
of the program ?

?- ancestor_of (lali, rezo).

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

?- ancestor_of (lali, rezo).

lali parent_of ana.
lali parent_of soso.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

Does it change
the result ?

Does it change
the search tree ?

34

Prolog trace
ancestor_of(lali, rezo).
(1) 1 CALL ancestor_of(lali, rezo)
(2) 2 CALL lali parent_of rezo
(1) 1 NEXT ancestor_of(lali, rezo)
(3) 2 CALL lali parent_of _298
(3) 2 *EXIT lali parent_of soso
(4) 2 CALL ancestor_of(soso, rezo)
(5) 3 CALL soso parent_of rezo
(5) 3 FAIL ... parent_of ...
(4) 2 NEXT ancestor_of(soso, rezo)
(6) 3 CALL soso parent_of _535
(6) 3 FAIL ... parent_of ...
(4) 2 FAIL ancestor_of(..., ...)
(3) 2 REDO lali parent_of _298
(3) 2 EXIT lali parent_of ana
(7) 2 CALL ancestor_of(ana, rezo)
(8) 3 CALL ana parent_of rezo
(8) 3 EXIT ana parent_of rezo
(7) 2 *EXIT ancestor_of(ana, rezo)
(1) 1 *EXIT ancestor_of(lali, rezo)

ancestor_of(ana, rezo)

parent_of(lali, rezo)
parent_of(lali, X1),
ancestor_of(X1, rezo)

ancestor_of (lali, rezo)

No ancestor_of(soso, rezo)

YesNo

parent_of(soso, rezo) parent_of(soso, X2),
ancestor_of(X2, rezo)

lali parent_of soso.
lali parent_of ana.
gia parent_of ana.
gia parent_of soso.
ana parent_of mariam.
ana parent_of rezo.

ancestor_of(A, C) :-
parent_of(A, C).

ancestor_of(A, C) :-
parent_of(A, X),
ancestor_of(X, C).

35

Execution trees can be large

36

• Prolog run time
system can cope
for hundreds of
thousands of
nodes

• When search
space too large
– time to consider

Constraint Logic
Programming

MORE ON PROLOG BASICS

37

Ex 2.6: Which queries are saHsfied ?

house_elf(dobby).
witch(hermione).
witch(’McGonagall’).
witch(rita_skeeter).
magic(X):-

house_elf(X).
magic(X):-

wizard(X).
magic(X):-

witch(X).

1. ?- magic(house_elf).
2. ?- wizard(harry).
3. ?- magic(wizard).
4. ?- magic(’McGonagall’).
5. ?- magic(Hermione).

Learn Prolog Now – Chapter 238

Another example : successor
Suppose we use the following
way to write numerals:
1. 0 is a numeral.
2. If X is a numeral,

then so is succ(X).

numeral(0).
numeral(succ(X)):-

numeral(X).

/*

?- numeral(succ(succ(succ(0)))).
yes

?- numeral(succ(1)).
No

?- numeral(2).
No

?- numeral(X).
X=0;
X=succ(0);
X=succ(succ(0));
X=succ(succ(succ(0)));
X=succ(succ(succ(succ(0))))

*/

Learn Prolog Now – Chapter 3
39

Exercise 2.7 : addition 1/2

Write a program that adds two numbers represented
with functor succ/1

?- add(succ(succ(0)),succ(succ(succ(0))), Result).
Result = succ(succ(succ(succ(succ(0)))))
yes

Learn Prolog Now – Chapter 3
40

Exercise 2.6 : addiLon 1/2 (bis)

Write a program that adds two numbers represented
with functor succ/1
?- add(succ(succ(0)),succ(succ(succ(0))), Result).
Result=succ(succ(succ(succ(succ(0)))))
yes

add(0, X, X).
add(succ(X), Y, succ(Z)):-

add(X, Y, Z).

Learn Prolog Now – Chapter 3
41

Exercise 2.6 : addition 2/2

Build the search tree for the resolution of
?- add(succ(succ(0)),succ(succ(succ(0))), Result).

42

43

recursive call where
variables have been
instanFated to their
current value

add(0, X, X).
add(succ(X), Y, succ(Z)):-

add(X, Y, Z).

Exercise ancestor
to be done at home

and uploaded on Moodle

• Relative to the ancestor program given in the
slides, give the answer of query
?- ancestor_of (lali, davit).

• Build the search tree for its resolution following
the model of the previous search tree

44

Remember

• “Yes” and “No” are valid answers
– this is logic programming

45

UnificaLon exercise

• (Try to) unify
my_pred(foo(X), Y , bar(67, toto(A)) and
my_pred(Foo , hello, bar(N , toto(72))

• Give the substitutions and the most general
unifier

46

A French menu
• Typically:

– Appetizer
– Main course (meat, fish or vegetarian)
– Dessert

• Examples of appetizers
– salad, poached egg, artichoke

• Examples of main courses
– meat: steak with vegetables, chicken with fries,
– fish: trout with rice, salmon with eggplant
– vegetarian: falafel with rice, vegetable lasagna

• Examples of desserts
– fruit salad, fresh fruit, cake

47

French menu is the
basis of the assessment
project

Exercise French menu

Write a Prolog program
1. Facts to introduce components
2. Rule(s) to define/verify the structure of a French

menu

A valid menu (test case -> YES)
?- french_menu(salad, trout_with_rice, cake).

Invalid menus (test cases -> NO)
?- french_menu(salad, trout, cake).
?- french_menu(falafel_with_rice, trout_with_rice, cake).

48

Take your 2me to search, code and test
your own program

Then take your 2me to understand the
following solu2on

49

Exercise French menu (bis)
Facts
appe:zer(salad).
appe:zer(poached_egg).
appe:zer(artichoke).

meat_course(steak_with_vegetables).
meat_course(chicken_with_fries).

fish_course(trout_with_rice).
fish_course(salmon_with_eggplant).

veggy_course(falafel_with_rice).
veggy_course(vegetable_lasagna).

dessert(fruit_salad).
dessert(fresh_fruit).
dessert(cake).

Rules
french_menu(A, M, D) :-

appe:zer(A),
main_course(M),
dessert(D).

main_course(M) :-
meat_course(M).

main_course(M) :-
fish_course(M).

main_course(M) :-
veggy_course(M).

50

Exercise French Menu: Update 1

• Nowadays, people tend to eat less
• Restaurants often offer the possibility to take

– Appetizer + main course, or
– Main course + dessert, or
– Appetizer + main course + dessert

• Update your program to take this into account

• Valid menus (test cases -> YES)
?- french_menu(salad, trout_with_rice).
?- french_menu(trout_with_rice, cake).
?- french_menu(salad, trout_with_rice, cake).

• Invent test cases -> NO
51

Ex French Menu : Update 1 (bis)
Facts
appetizer(salad).
appetizer(poached_egg).
appetizer(artichoke).

meat_course(steak_with_vegetables).
meat_course(chicken_with_fries).

fish_course(trout_with_rice).
fish_course(salmon_with_eggplant).

veggy_course(falafel_with_rice).
veggy_course(vegetable_lasagna).

dessert(fruit_salad).
dessert(fresh_fruit).
dessert(cake).

Rules
french_menu(A, M) :-

appetizer(A),
main_course(M).

french_menu(M, D) :-
main_course(M),
dessert(D).

french_menu(A, M, D) :-
appetizer(A),
main_course(M),
dessert(D).

main_course(M) :-
meat_course(M).

main_course(M) :-
fish_course(M).

main_course(M) :-
veggy_course(M).

52

Exercise French Menu : Update 2

• Sometimes cheese can replace dessert,
sometimes it is offered before dessert

• Update your program to take this into account

• Valid menus (test case -> YES)
?- french_menu(salad, trout_with_rice).
?- french_menu(trout_with_rice, roquefort).
?- french_menu(salad, trout_with_rice, roquefort).
?- french_menu(salad, trout_with_rice, roquefort, cake).

• Invent test cases -> NO
53

Ex French Menu :
Update 2 (bis)

Facts
appe;zer(salad).
appe;zer(poached_egg).
appe;zer(artichoke).

meat_course(steak_with_vegetables).
meat_course(chicken_with_fries).

fish_course(trout_with_rice).
fish_course(salmon_with_eggplant).

veggy_course(falafel_with_rice).
veggy_course(vegetable_lasagna).

dessert(fruit_salad).
dessert(fresh_fruit).
dessert(cake).

cheese(roquefort).
cheese(camembert).

Rules% french_menu/2
french_menu(A, M) :-

appe;zer(A),
main_course(M).

french_menu(M, D) :-
main_course(M),
dessert_or_cheese(D).

% french_menu/3
french_menu(A, M, D) :-

appe;zer(A),
main_course(M),
dessert_or_cheese(D).

% french_menu/4
french_menu(A, M, C, D) :-

appe;zer(A),
main_course(M),
cheese(C),
dessert(D).

main_course(M) :-
meat_course(M).

main_course(M) :-
fish_course(M).

main_course(M) :-
veggy_course(M).

dessert _or_cheese(D) :-
cheese(D).

dessert _or_cheese(D) :-
dessert(D). 54

Hindsight

• Note how easy it is to increase the power of
Prolog programs
ØPowerful prototyping language

55

Hanoi Towers program 1/2
move(1, Source, Target, _):-

princ("Move top disk from %w to %w\n", [Source, Target]).
move(N, Source, Target, Aux):-

N > 1, % the 2 clauses are exclusive

princ("Solve problem %w\n", [N]),
N1 is N-1,
move(N1, Source, Aux, Target), % first solve N-1 problem

move(1, Source, Target, _), % to be able to move large ring

move(N1, Aux, Target, Source). % then really solve N-1 problem

56

Note the 2 recursive calls. The problem IS difficult.
This program explains it !

Note also predicate “princ/2” that can be very useful !

Hanoi Towers program 2/2

• Run the program with query
?- move(4, source, target, auxiliary).

• To understand the execution, play the game in
parallel with
https://www.mathplayground.com/logic_tower_of_
hanoi.html

57

https://www.mathplayground.com/logic_tower_of_hanoi.html

Hanoi Towers
program 2/2 (bis)

move(1, Source, Target, _):-
printf("Move top disk from %w to

%w\n", [A, B]).
move(N, Source, Target, Aux):-

N > 1,
printf("Solve problem %w\n", [N]),
N1 is N-1,
move(N1, Source, Aux, Target),
move(1, Source, Target, _),
move(N1, Aux, Target, Source).

?- move(4, source, target, auxiliary).
Solve problem 4
Solve problem 3
Solve problem 2
Move top disk from source to auxiliary
Move top disk from source to target
Move top disk from auxiliary to target
Move top disk from source to auxiliary
Solve problem 2
Move top disk from target to source
Move top disk from target to auxiliary
Move top disk from source to auxiliary
Move top disk from source to target
Solve problem 3
Solve problem 2
Move top disk from auxiliary to target
Move top disk from auxiliary to source
Move top disk from target to source
Move top disk from auxiliary to target
Solve problem 2
Move top disk from source to auxiliary
Move top disk from source to target
Move top disk from auxiliary to target

58

